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Abstract: 

Modelling of Landslide Susceptibility and affected Areas – Process-
specific Validation of Databases, Methods and Results for the 

Communities of Gasen and Haslau (AdaptSlide) 

 

Modellierung von Rutschungsdispositionen und Prozessbereichen – 
Prozessspezifische Bewertung von Datengrundlagen, Methoden und Ergebnissen für 

das Gemeindegebiet von Gasen und Haslau, (AdaptSlide) 

 

In recent years several approaches to estimate landslide starting zones were 
developed. However, the practical value of the results for hazard assessment cannot 
be considered proven.  

The AdaptSlide project provides a comprehensive and conclusive overview of 
currently available data bases, approaches and models to asses the susceptibility of 
spontaneous gravitational mass movements in loose material. Approaches to 
determine the whole affected areas have been developed. Process-orientated 
geological basic disposition maps, soil maps, remote sensing data, runoff disposition 
maps and precipitation maps were generated and assessed regarding cost-benefit 
aspects. The landslide susceptibility of the test-area (communities of Gasen and 
Haslau in SE_Austria) was modelled with several statistics-based approaches 
(Neural Network, Weight of Evidence, Logistic Regression) and one deterministic 
model (SINMAP). Model results have been validated and compared as far as 
possible; the limitation of current available validation methods was highlighted. A 
simple empirical model was developed to estimate the process area, based on 
landslide susceptibility maps. Methods were discussed regarding their potential to 
represent the impacts of climate and land use changes. 
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1. Introduction  

In the recent years beside other natural hazards also landslides have caused 
substantial damage to settlements and infrastructure in mountainous regions like the 
Alps. In the future more frequent and more serious damage to property seems to be 
likely, because the relevant factors probably develop in an adverse way. Since the 
damage respectively the risk of losses of life and damage to property depends on 
the development of the process as well as on the development of the property, 
changes of both factors have to be considered. 

A causal relationship between climatic developments and damage events with an 
ever increasing amount of damage seems to be obvious at first sight. For complex 
systems such as landslide processes it is important to critically question such a 
simplified representation of causal interrelationships. In order to be able to draw 
informed conclusions and to assess the effects of changes of individual system 
components like climate parameters or land-use, the “status quo” needs to be 
known, respectively the approaches and methods to estimate them and the 
incertitude’s which have to be taken into account, using their results as basis for any 
kind of risk management. 

Coming along with lately frequent landslide events in Austria (Gasen 2005 
(BMLFUW 2006, Andrecs et al. 2007), Vorarlberg 2005 (BMLFUW 2006, Markart et 
al. 2007, Tilch & Kociu 2006, Tilch et al. 2009), Klingfurth 2009 (Chifflard & Tilch 
2010, Tilch 2009), Feldbach and adjacent districts 2009 (Haberler et al. 2009, 
Schwarz et al. 2009)) a lack of area-wide slope susceptibility information, especially 
in case of spontaneous landsides in loose material showed up. The unexpected 
occurrence and the often rapid movement of such movements are specific 
characteristics of this kind of natural hazard, which cause high damage potential and 
hinder land-use planning measures.  

A comprehensive and conclusive representation of currently available model chains 
is necessary to access reliable landslide susceptibility (spatial probability) and 
potential extent (runout and magnitude) approaches and models. 

Hence, the Austrian Federal Ministry for Agriculture, Forestry, Environment and 
Water Management (BMLFUW) launched a cooperation of the Federal Research 
and Training Centre for Forests, Natural Hazards and Landscape (BFW), the 
Geological Survey of Austria (GBA), the Joanneum Research (JR) and the Central 
Institute of Meteorology and Geodynamics (ZAMG) to evaluate several databases 
and the potential of new technologies like Remote Sensing Technologies as LIDAR 
(airborne Laserscanning) and VHR (very high resolution) satellite images, with 
reference to the landslide relevant information content. Subsequently, the project 
aims to develop, improve and compare different methods of area-wide spontaneous 
landslide assessment in loose material. A further aim was to develop a method to 
estimate the extent of the process zones in an area-wide approach. The former three 
organizations already cooperated in a previous project (Tilch et al. 2009) under the 
guidance of the GBA, collecting data from a landslide-event in the communities of 
Gasen and Haslau 2005, and building up a database, which should allow further 
landslide-related activities.  

Under the title „AdaptSlide (Modelling from slide disposition and process-area in the 
communities of Gasen and Haslau), project work has started in Oct. 2009, revering 
to this database. The project is part of the EU Alpine Space project Adaptalp 
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(Adaptation to Climate Change in the Alpine Space, Priority 3: Environment and Risk 
Prevention) which aims to describe possible adaptation strategies to climate change 
in the alpine space.  
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2. Aims and Strategies of the Project 

The main aim of the AdaptSlide project was to develop, improve and compare 
different methods of area-wide spontaneous landslide assessment in loose material 
while optimizing the thematic data, thus ascertaining a reproducible approach to 
estimate landslide susceptibility. The main output to be produced are susceptibility 
maps for spontaneous shallow mass movements for the communities of Gasen and 
Haslau. 

In detail aims and strategies of the project consider the following items: (1) the 
processing of input data, (2) the landslide susceptibility modelling with different 
approaches, (3) the comparison and validation of the results with adequate methods, 
(4) the modelling of process-areas, (5) the potential of the applied methods in 
modified basic conditions (e.g. climatic changes) and (6) the analysis of benefits and 
costs of the applied data and methods. 

1) Aiming at the generation of a reliable database for the model 
development the first focal point is to evaluate the available landslide 
inventory carefully and to divide it into batches of different quality. In 
order to ensure a clear, transparent extraction of the data, a hierarchical 
method has to be developed and applied. With regard to the available 
input maps of environmental parameters high priority is given to the 
aspect of process-relevant processing utilising the different expertises 
and synergies of the involved project partners. Data are analysed 
critically with regard to their physical relevance to eliminate accidental 
correlations which may distort the modelling result. Different data 
sources (general available data and innovative ones) are used and 
different processing levels (low effort and high effort) are taken into 
account aiming at the evaluation of benefits and limits with regard to the 
modelling of landslide susceptibility.  

2) The modelling part is arranged to evaluate different methods of 
modelling the susceptibility. Three statistical approaches representing 
different complexity of calculations are selected aiming at the 
identification of the best method. In order to take advantage of the 
excellent database and to demonstrate a completely different method a 
deterministic approach is applied as well. A general strategy for 
successively integrating different parameters for the statistical modelling 
is developed considering “level low” parameters and parameters with 
high correlation to the distribution of landslides first, followed by “level 
high” parameters. The number of parameters is extended one by one to 
quantify their influence. The best results according to different validation 
methods are selected and are re-calculated using simplified datasets 
without involving field-mapped landslide data in order to point out the 
significance of such data. Runs with process-oriented parameter 
combinations exclusively were also calculated, based on expert 
knowledge rather than on the strategy for successively integrating 
different parameter maps. 

3) As different approaches are applied and many different parameter 
combinations are calculated, high priority has to be given to the 
validation and comparison of the results with adequate methods. The 
drawbacks of the state-of-the art validation methods characterizing the 
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whole test area without any local differentiation should be reduced by 
the joint interpretation of several methods. Aiming at visualizing the 
differences of selected modelling results, difference maps are calculated 
within one method as well as between two of the applied statistical 
methods. 

4) As the resulting maps were designed to be finally used in landuse 
planning tasks, not only susceptibility maps of the landslide source 
areas were to be displayed. Since landslides in loose material frequently 
result in debris flow and thus affect much larger areas than the starting 
zones, a further aim was to estimate the whole process areas. 
Therefore the method need to be applicable on an area wide basis and 
should have moderate model input requirements. Since the method 
should complete the contents of landslide-disposition maps, it has to be 
attuned on such maps regarding e.g. the kind of starting information the 
scale and the display of results. 

5) Analyses should comprise the potential of the methods and models to 
consider changing environmental conditions caused by climate change 
or variations in land use. Regarding precipitation scenarios models 
therefore are developed with the real precipitation distribution as 
presented by the respective August 2005 event analyses and 
regionalised afterwards with highest (worst case) intensities. 
Furthermore a different scenario with respect to landcover (change of 
distribution of forested/non-forested areas) are calculated in order to 
identify those areas with high sensitivities to landuse modifications. 

6) Last but not least high relevance is given to the documentation of the 
efforts invested in each of the working steps to obtain detailed data with 
regard to benefits and costs. This documentation should result in 
recommendations for appropriate methods applicable under certain 
conditions and for certain aims (costs, value and limits of results). Also 
the question of the applicability of the investigated methods in different 
landscapes and regions is addressed.  
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3. Project Area (GBA) 

The Gasen-Haslau area, which was studied for the ADAPTSLIDE-ADAPTALP 
project, is a region that last experienced numerous gravitational mass movements in 
August 2005, in the course of a period of high initial soil moisture and several days of 
continuous moderate precipitation. The events in question were mainly soil slips and 
earth flows, which often caused severe damage (Tilch & Koçiu 2006). Especially 
since the night of 21/22 August 2005, more than 770 gravitational mass movements 
took place over a period of several days in the region of the communities of Gasen 
and Haslau (Tilch et al. (2009), Fig. 3.1-1, area: approx. 50 km²). In many places, 
infrastructure (electric power lines, drinking water supply lines) or buildings 
(residential housing and commercial buildings) in towns, as well as connecting roads 
between localities were badly damaged. Many buildings had to be evacuated, and a 
large number of people were cut off from the outside world for days. In addition to 
considerable property damage, there was also one tragic event in the town of Gasen 
(see Fig. 3-1). During the night, an earth flow formed on the slope above one house. 
The material of this earth flow moved down into the valley and almost completely 
destroyed the house at the foot of the slope. Two people were killed.  

 

 

Fig. 3-1: An earth flow/soil flow completely destroyed a home in the village of Gasen. Photo source: 

GBA photo archives 

 

3.1. Location and Characteristics of the Project Area 

The project area is located in the northeast part of the Austrian federal state of 
Styria, in the southern region of the Fischbacher Alps. The landscape is sub-
mountainous in character; mountain heights varies between 800 and 1500 metres 
(above the Adriatic see level) within short distances, and the slopes are very steep in 
some places. 

Due to the landscape genesis, the lower parts of the slopes are generally quite 
steep, while the upper slopes tend to be flatter. In consequence, both the flat areas 
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of the valley bottoms and the higher mountain slopes are populated, particularly 
those with southern exposure. The steeper slope areas and the slopes exposed 
north are mainly forested.  

From a geologically view, the project area is located in the middle and lower section 
of the tectonic nappe group of the Graz Upper Austroalpine Paleozoic. 

 

Fig. 3.1-1: Geographical position, inventory map of the gravitational mass movements of the event in 

August 2005, and land use/vegetation in the Gasen-Haslau project region. Key: Note designation of 

process types 

     

Fig. 3.1-2: Impressions of the Gasen-Haslau project area on a dry summer day: looking north to the 

village of Gasen and the mixed land use on hillslopes. The lower slopes in the valleys are steeper, 

formed by dominant fluvial erosion along the valley floor.  Photo source: GBA photo archives 
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A large part of the area is characterized by phyllitic mica schists and phyllites of the 
Exenberger series (Passailer phyllite and Heilbrunner phyllite). These hard rocks are 
mainly covered by more or less loamy sandy silts to silty sands with varying 
proportions of gravel. The western edge of the area is dominated by mainly 
carbonate rocks with marly soils.  

In addition, black shale of the Devonian Arzberger Formation and orthogneisses of 
the Raabalpenkristallin are partially significant (Chapter 5.1). Whereas black shales 
mainly produce loamy to very loamy soils with gleys in hillside depressions, soils in 
the region of gneisses are predominantly sandy. 

 

3.2. Types of Gravitational Mass Movements 

With a few exceptions, the gravitational mass movements that took place were 
spontaneous processes in soil. In the basis scar areas, usually the relatively 
unweathered rock or Cv-horizon became visible. Sometimes these horizons were 
masked or overlaid by material that fell or slide off the steep edge of the landslide 
scar. Depending on the thickness and composition of the soil layers, rotational 
(thicker soil layers) or translational (flatter soil layers) soil masses have been moved 
out (Fig. 3.2-1). 

 

Fig. 3.2-1: Examples of gravitational mass movements in soil in Gasen-Halau project region: Rotational 

soil slide with a curved, concave-shaped sliding surface (left) and translational soil slide with a planar 

sliding surface (right). Photo source: GBA photo archives 

 

During field mapping it was found out that most spontaneous mass movements 
could actually be assigned to only one dominant initial process type (cracking, mass 
movement type 1, stage 1). Out of this initial type, depending on local conditions (eg 
substrate, slope hydrology) different dominant types of processes evolved 
secondarily. On the one hand, soil slides have occurred, which caused an 
accumulation of the transported soil material near the scar area (mass movement 
type 2). In these process areas, the sliding process represents the final process 
stage (stage 3). On the other hand, some soil slides also turned into earth flows, so 
that the material was transported smoothly and rapidly down the slope (mass 
movement type 3, stage 4). Depending on the roughness (eg land use and micro-
topography) as well as the length and inclination of the downhill slope, the material 
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speed and the transport distance varied. Especially on steep slopes with low surface 
roughness earth flows were able to travel long distances (Fig. 3.2-2, left) and reach 
high speeds. As a result, major damages were sometimes caused by relatively small 
masses of material (Fig. 3.2-2, right).  

 

  

Fig. 3.2-2: The small source area and very long transition and accumulation area of a soil/debris flow 

(left) and the resulting damage/disaster (right). Photo source: village government photo archives 

 

In a few instances, there were crater-like depressions with an irregular form and 
surface in the centre of earth-flow scar areas (Fig. 3.2-3). Only sliding or sliping initial 
processes can rather be excluded for such designed scar areas. These are probably 
evidences of spontaneous, hydrostatically caused (PWD) “slope explosions” 
(reference: Fig. Text 3.2-3). The released material was flowing out directly as an 
"earth flow" downhill, due to high water content and low consistency. These would 
thus be process areas in which extremely spontaneous earth flows formed without 
previous distinguishing characteristics or process indicators (stage 3). 

The processes that take place within one process area are of course often so multi-
faceted, complex, and variable in time that the mapped phenomena cannot always 
be unequivocally interpreted. Anyhow already in the course of field mapping it was 
possible to categorize all mapped unstable process areas in accordance with the 
respective dominant process type. (Fig. 3.2-4, Tab. 3.2-1). Not least, this was done 
against the background, that the process types and process stages include different 
hazard potentials. For example, earth flows generally have high hazard potential of 
impact, especially due to their high material velocity and large process extents. 
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Fig. 3.2-3: Crater-like source area with the main scarp of a soil/debris flow, formed by excess pore 

water pressure (“soil explosion”). Photo source: GBA photo archives 

 

     process type 1 / stage 1/2              process type 2 / stage 3                 process type 3 / stage 4 

    

Fig. 3.2-4: Classification of the gravitational mass movements in soil of the event “August 2005” in the 

Gasen-Haslau project region on the basis of movement type and development stage. Photo source: 

village government photo archives (left) and GBA photo archive (centre, right) 

 

Tab. 3.2-1: Amount of the gravitational mass movements in soil (n=771) of the event “August 2005” in 

the Gasen-Haslau project region, classified by movement type and development stage of the process 

type/stadium of gravitational mass movement

1/1,2 2/3 3/4

incipient cracking soil slide/soil slip soil slip and earth flow unknown/unclear process
movement initial sliding sliding ??

flowing

number 49 436 107 179
percentage [%] 6,4 56,5 13,9 23,2  
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4. Available Data (GBA, JR) 

The following is a brief introduction to the process and spatial data/parameter maps 
that are important for the project in the sense of being available basic data. 

4.1.  Process Data 

Shortly after the events of August 2005, the crisis management group and several 
institutions (BFW*1, GBA*2, Engineering Office Geolith, WLV*3, State Government 
of Styria) working in various specialist disciplines gathered a large number of 
evidences and informations on the gravitational mass movements in question 
through field investigation. Later, there was archive research (GBA) and evaluation 
of current and older (1996, 2003) aerial photographs (Joanneum Research) in order 
to acquire as much information as possible on previous gravitational mass 
movements. This is very important, because only in this way a more objectified 
overall picture of the distribution of processes, significant process types and local-
specific factors is possible (for example an event-independend viewing is possible). 

All researched documents and information obtained in the field and through remote 
sensing were digitally processed as part of the project FloodRisk II (see Tilch et al. 
2009) and cartographically represented by means of GIS technology. In order to 
avoid redundant information, all GIS data was synchronized by compiling the best, 
detailed information with regard to content (for example process and damage 
information) and/or quality (for example, localisation, extent of the process area) into 
one data set. This is necessary to clearly link all types of metadata (for example 
photographs, expert opinions and survey reports) internally and with the GIS data. 
Based on the data compiled in this way, various digital map products on different 
scales were produced for use in further spatial planning, such as: 

- digital process cadastre/register, 1:10,000 (Fig. 4.1-1) 

- digital thematic inventory map, 1:5,000 (Fig. 4.1-2) 

- process index map for different scales and extensions 

The digital thematic inventory map, which is based on aerial photographs taken soon 
after the event (not available for the entire area) and field investigation, provide 
information on the process areas affected. As training and calibration data, this is 
important basic material for subsequent process modelling. Data from the process 
cadastre/register is significant for the modelling of susceptibility maps. 

All of this data and all of these maps were available in digital form at the beginning of 
the ADAPTSLIDE project. 

 
 
 
*1 Federal Research and Training Centre for Forests, Natural Hazards and Landscape 

*2 Geological Survey of Austria 
*3 Forest Engineering Service in Torrent and Avalanche Control 
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10Projekttreffen in Gasen am 12.10.2007

Remote Sensing

Remote Sensing and Damage report

Field mapping

Field mapping and Remote Sensing

Field mapping and Damage report

Field mapping, Remote Sensing and Damage report

Expert report

Damage Report 

 

Fig. 4.1-1: Process cadastre/register with information about the type of data source/survey methods 

(Tilch et al. 2007) 

 

 

Fig. 4.1-2: Thematic inventory map with information about the process sub-areas (left, Tilch et al. 2009) 

and a section of an aerial photo (right, data source: Joanneum Research) 

 

4.2. Available Spatial Data 

The concept of statistical modelling of susceptibility is based on the assumption that 
future landslides rather will happen under similar environmental circumstances as 
past ones did. Therefore for statistical modelling the second important input besides 
the landslide inventory is a set of maps of environmental parameters which are 
relevant to the process taken into focus. Spatial data always have to be checked with 
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regard to their physical relevance to eliminate accidental correlations which may 
distort the modelling result.  

Different categories of parameter maps were created according to their processing 
status: 

� directly derived maps 
� elaborately derived maps 
� combined maps 

In this section only directly derived map are listed. For elaborately derived maps and 
combined maps requiring high processing effort please refer to section 5. 

For direct derivation of maps of environmental data the following data sources were 
used: 

� Digital Cadastral Map (DCM) of the Austrian Federal Office for Metrology and 
Surveying  

� Digital Terrain Model (DTM) with a spatial resolution of 10 m of the Austrian 
Federal Office for Metrology and Surveying 

The following parameters were derived directly from these basic datasets requiring 
only little processing effort: 

� Wegenetz_lg  Influence area of Road Network „level low“ based on DCM 

� Wald_DKM_lg Forest „level low“ based on DCM 

� Wald_DKM_lg_80 Forest „level low“ ≥ 80% forest per pixel based on DCM 

� HN-DHM10  Slope/inclination based on DTM 10m 

� HW-DHM10  Plan Curvature based on DTM 10m 

� VW-DHM10  Profile Curvature based on DTM 10m 

� HK-DHM10  Curvature Classification based on DTM 10m 

� Flowaccumulation Flowaccumulation based on DTM 10m 

Spatial data were aggregated to 50 m rasters to provide for spatial inaccuracies. 
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5. Production of Improved, Process-oriented Parameter 

Maps  

Additional topics considered important with regard to the process in focus are:  

� geology 
� soil 
� land cover 
� runoff disposition  
� precipitation 

Available maps of these subjects did not adequately consider the parameters which 
control landslide activity. Therefore maps had to be reprocessed using additional 
datasources, field information and expert knowledge. Technical aspects of these 
adaptations are presented in detail in the sections 5.1. – 5.5. 

Generally two different levels of processing effort applied for the generation of 
parameter maps can be distinguished: 

� level low (abbreviation “lg” in parameter maps) 
� level high (abbreviation “lh” in parameter maps) 

“Level low” parameter maps are generated by means of simple, standard methods, 
while “level high” parameter maps are generated by advanced, higher developed 
methods with higher expenditure.  

 

5.1. Geological Basic Disposition Maps (GBA) 

5.1.1.  Production of Conceptual Soil Maps using the GBA Methods 

The main emphasis of the project is the production of susceptibility maps for 
spontaneous gravitational mass movements in soil in the Gasen-Haslau region. In 
order to facilitate large-scale, comprehensive assessment of susceptibility, it is 
necessary to have detailed and comprehensive information on the loose geosphere 
(soil and unconsolidated weathered rock in particular, referred in combination as the 
‘weathering veneer’).  

However, the generally available geological map (scale: 1:50,000) is only useful to a 
limited extent in dealing with issues of this kind, because it provides only partial 
information on the weathering veneer. A comprehensive conceptual soil map was 
therefore produced for the project area, which provides as detailed and realistic 
information as possible on the process-relevant weathering veneer.  

A method developed by the Geological Survey of Austria was employed in producing 
the map. This is a simple, three-step, or an expanded five-step method (Fig. 5.1.1.1-
2) , based on the available geological map that can be used for any location for 
which there is an existing area-wide geological map.  
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5.1.1.1 Method 

The first step involves interpreting all geological units of the geological map (GK50, 
Fig. 5.1.1.1-1) as geotechnic-lithological units. Soil units are first interpreted on the 
basis of their general lithology and anistropy. Solid rock units are interpreted on the 
basis of (i) fracturing and weathering susceptibility (ii) and lithological 
heterogeneity/homogeneity. The result is a map of the geotechnically-lithologically 
units (GTL map).  

As a second step, geotechnic-lithological soil units were assigned to 7 classes of 
substrates. If there were heterogeneous units or stratigraphical columns, the finest 
granular subunit was always taken as the base (in the sense of worst-case 
conditions). Furthermore, all solid rock units of the GTL map were assigned, using 
simple educt-product analogies corresponding to their distribution, to general or 
medium substrate classes respectively (general potential weathering products). This 
is done on the hypothesis that different (par)autochthone products (soil substrates) 
arise from different educts that have different mineral composition and potential 
fracture frequency, and thus different weathering susceptibility. Complex processes 
of slope denudation (for example periglacial processes) naturally lead to small-scale 
lithological-structural variances, as they do in many ways in the slope scale. 
However, these cannot be accounted for on the basis of the geological maps alone. 
They only allow identification of areas in which significant soil types predominate.  

Given the background and aims of the project, there was chiefly assessment of 
those soil characteristics (grain-size distribution, texture of soil, dominant grain size) 
on the basis of which project-relevant soil characteristics and parameters (for 
example, hydraulic permeability, angle of internal friction) could subsequently be 
qualitatively to semi-quantitatively derived. 

Reclassification of the solid rock units of the GTL map in potential areas of 
comparable soil substrates was done during this process on the basis of the 
following criteria: 

- supported by rough-grains (sand-gravel) or  fine grains (clay-silt) 
- dominant soil type of the supporting, fine-grained soil (silt, clay) 
- portion of rough and fine grains 
- Heterogeneity and homogeneity of the units 
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Fig. 5.1.1.1-1: Available digital geological map of the Geological Survey of Austria (1:50,000) of the 

project area (Flügel et al. 1990, Geofast 2005) 

 

Gk50

GTL-map

conceptual soil map
low level

geological expert knowledge
(areas of similar authochtone sedimentary cover)

geological expert knowledge
(areas of similar characteristics)

conceptual soil map
middle level

spatially variable status of weathering
(landscape specific relief units)

spatially variable status of weathering
(potential soil moisture)

conceptual soil map
high level

calibration/validation data
(mapped field information)

 
 

Fig. 5.1.1.1-2: Processing operation for producing substrate conceptual maps of different 

processing/quality levels 
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The distribution of substrate classes is oriented to the distribution of heterogeneous 
to homogenous units on the GTL map, or as the case may be the digital geological 
map. Therefore, the conceptual soil map (sub-map) produced is also based on a 
scale of 1:50,000 (sub map – low level).  

Area-specific landscape developments are accounted for in an additional step, 
where the substrate classes (low level) of different relief units (hills, steep slopes, 
gentle slopes, etc.) are adapted according to the existing, different stage of 
weathering. This adaptation is done by upgrading or downgrading substrates from 
the different relief units by class. In this way, the conceptual soil map ‚sub map – 
middle level,’ is produced. 

In a final step, it is taken into account that locations with higher humidity are also 
potentially locations of more intensive chemical weathering, and that they will 
therefore tend to have greater loam deposits. The identification of areas with 
different, or as the case may be comparable humidity is done using the Topographic 
Wetness Index. Classification in the sense of delineating humidity classes is done on 
the basis of field knowledge. In this manner, dry locations are identified in rather 
steep slope locations and/or smaller catchment areas (for example ridges, divergent 
slopes), whereas wet areas tend to be identified in dell locations with larger slope 
catchment areas. Thus, for the latter locations, the substrate class might be modified 
by two substrate-class categories (for example, soil type 23 -> soil type 25).  

The substrate classes identified in this way for all conceptual soil maps can be 
described in a combined way as follows: 

11: supported by rough-grained, gravel-rich soil/sediment, no portion of fine 
grained soil/sediment (no loam) (gravelly slope cover) 

12: supported by rough-grained, gravel-rich soil/sediment, very high portion of 
stones, small or very small portion of fine-grained soil/sediment (silty) and 
partly loamy (sandy slope cover) 

13: supported by rough-grained, sandy-gravelly soil/sediment, moderately portion 
of stones, moderately of fine-grained soil/sediment (silty) and partly or 
somewhat loamy (silty slope cover) 

14: supported by rough-grained, sandy-gravelly soil/sediment, moderately portion 
of stones, high portion of fine-grained soil/sediment (strongly silty) and partly 
or somewhat loamy (silty sand) 

23: supported by fine-grained silty soil, sandy, small portion of stones and 
moderate loamy (sandy loam) 

24: supported by fine-grained, silty-claylike soil/sediment, small portion of stones 
and strongly loamy (from clay-rich silt to silt) 

25: supported by fine-grained silty-claylike soil/sediment, small portion of stones 
and very strongly loamy (from silty clay to clay) 

Because substrate information was available for the project area, the conceptual soil 
maps produced could be calibrated at different processing/quality levels. A total of 68 
substrate data samples distributed among 52 locations in the area were available for 
this purpose (cf. Fig. 5.1.1.1-3). 

Information on several substrate classes was available for 14 of these locations, 
which underscores the small-scale heterogeneity/variability of the substrate. For 
example, substrates of the classes 13 to 24 were found in one scar area. Substrate 
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heterogeneities of this kind cannot of course be accounted for using a method of 
producing substrate conceptual maps that has been simplified to this degree. 
However areas can be identified in which one substrate class potentially dominates 
due to the location factors included. It was particularly important here to concentrate 
on identifying the substrate class that was presumably the most sensitive toward the 
dependent variable (susceptibility). 

Calibration of the substrate conceptual maps was done using all field information, 
irrespective of the small-scale substrate heterogeneities.  

Using GIS retrieval, the mapped substrate information was compared to that of the 
conceptual maps, and the latter information subtracted. Here, positive values mean 
that the substrate class of the substrate conceptual map is shown as too high, 
corresponding in each case to the substrate discrepancy identified (-1 means, for 
example, that the substrate of the conceptual map is too high by one substrate 
class).  

 
Fig. 5.1.1.1-3: Locations of observed soil classes in the project region Gasen-Haslau (grey line: 

observed area, black line: model area) 

 

5.1.1.2 Results 

Calibrated substrate conceptual map – low level 

To begin with, the substrate conceptual map obtained (low level) was compared to 
the obtained field information. This demonstrated that in more or less the entire area, 
there was, on the one hand a relatively good match, and on the other, relatively large 
discrepancies between the substrate conceptual map and field information. This is 
attributed to the small-scale variability in the soil substrates. The major discrepancies 
occur primarily because the substrate conceptual map tends to show substrates that 
are too rough-grained in all substrate classes. For this reason, all substrate classes 
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on the substrate conceptual map were upgraded by one substrate class (adjustment 
by one substrate class in the direction of finer-grained soils, for example 11->12, 12-
>13). In this way, a calibrated conceptual map was obtained, and on the whole, a 
more balanced relationship between substrate overestimates and underestimates 
was achieved (Fig. 5.1.1.2-1, 5.1.1.2-2).  

 

 
 

Fig. 5.1.1.2-1: Discrepancy between the substrate classes of the calibrated substrate conceptual map 

(low level) and the field information (negative values mean soils that are too gravel-rich on the 

substrate conceptual map) 
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Fig. 5.1.1.2-2: Number of information items with a corresponding discrepancy (substrate-class 

discrepancy) compared to the calibrated substrate conceptual map (low level). Left: all data, 

irrespective of the substrate classes. Right: data in one substrate class of the substrate conceptual 

map. Negative values mean soils that are too gravel-rich on the substrate conceptual map 
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Calibrated conceptual map – middle level 

The substrate conceptual map ‘middle level’ was calibrated analogously to the 
substrate conceptual map (low level). Due to the partial modification based on relief 
units, there is now a significantly wider spectrum of substrate classes. However, the 
discrepancy between the substrate conceptual map and the field information is more 
pronounced than it was with the non-calibrated, initial substrate conceptual map (low 
level). This is due mainly to the substrates being modified in the direction of coarse-
grained substrates in the slope locations (-1) and steep slope locations (-2). There 
are obviously negative discrepancies (a substrate being identified as too gravel-rich) 
particularly in the region of the substrate classes 11 and 12 of the conceptual maps. 
But this is also seen in milder form in the substrate classes 13 and 14. The substrate 
classes of the substrate conceptual map (middle level) are therefore corrected as 
follows: 

Substrate class 11, 12 -> +2 substrate classes 

Substrate class 13, 14 -> +1 substrate class 

Substrate class 23, 24 -> +/-0, no change 

The calibrated substrate conceptual map obtained in this manner (middle level, cf. 
Fig. 5.1.1.2-3) now displays a predominantly symmetrical spread of and within all 
substrate classes around the substrate classes investigated (Fig. 5.1.1.2-4). The 
percentage of major deviations is now relatively low as well. 

 

 
 

Fig. 5.1.1.2-3: Discrepancy between the substrate classes of the calibrated substrate conceptual map 

(middle level) and the field information (negative values signify soils that are too gravel-rich on the 

substrate conceptual map) 
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Fig. 5.1.1.2-4: Number of field information items with a corresponding discrepancy (substrate-class 

discrepancies) compared to the calibrated substrate conceptual map (middle level). Left: all data, 

irrespective of substrate classes. Right: data within one substrate class of the substrate conceptual 

map. Negative values signify soils that are too gravel-rich on the substrate conceptual map 

 

Substrate conceptual map – high level 

The improved substrate conceptual map ‘high level’ was calibrated along the same 
lines. After additional partial modification based on the Topographic Wetness Index, 
there is now a spectrum of substrate classes for the project area that is 
approximately as wide as that obtained in the field. It is also extremely positive that 
the discrepancies between these classes and those determined in the field are now 
usually quite small (Fig. 5.1.1.2-5 and Fig. 5.1.1.2-6). However, it is should also be 
noted that substrates richer in finer particles were often detected, particularly in the 
region of gravel-rich substrate classes (11, 12) (indicating a tendency toward 
negative discrepancies), and that by the same token, more gravel-rich substrates 
were detected in the region of finer-particle substrate classes (24, 25) (indicating a 
tendency toward positive discrepancies, cf. Fig. 5.1.1.2-6). This might mean that 
substrate extrema are too often identified, or shown as too widely distributed when 
using substrate conceptual maps. On the whole, however, it should be kept in mind 
that a relatively small amount of field information (68 items in total) is spread over a 
relatively large number of substrate classes, and that individual substrate classes 
therefore cannot be sufficiently analysed, or as the case may be calibrated. 
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Fig. 5.1.1.2-5: Discrepancy between the substrate classes on the improved substrate conceptual map 

(high level) and field data (negative values signify soils that are too gravel-rich on the substrate 

conceptual map) 

 

Nevertheless, there was an attempt to calibrate the improved substrate conceptual 
map (high level) on the basis of the available field information. Different methods 
were employed in doing so, however, no calibration method resulted in a generally 
valid adjustment that could be applied to the entire surface and all substrate classes. 
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Fig. 5.1.1.2-6: Number of field information items showing the corresponding discrepancies (substrate 

class discrepancies) compared to the calibrated substrate conceptual map (high level). Left: all data, 

irrspective of substrate classes. Right: data within a substrate class of the substrate conceptual map. 

Negative values signify soils that are too gravel-rich on the substrate conceptual map 

 

Nevertheless, it was seen that the modifications of the substrate conceptual map 
(‘low level’) in relation to relief and potential soil moisture did have a positive effect 
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on the result. Good results (+/- one substrate class) were obtained for all relief units 
and the soil-moisture classes. However, it should not be overlooked that in some 
locations, very poor results were achieved (deviations of 3 and 4 substrate classes). 
This was the case because, on the one hand: 

� very different substrate classes (small-scale heterogeneity) occur even in very 
small areas. In one scar area, for example, a range of substrate classes from 
14 to 25 was identified, 

� and on the other hand, the natural, real spatial variability of the substrate 
classes simply cannot be depicted using a simplified method of this kind. 

 

5.1.2. Derivation of Geological Basic Disposition Maps of different 
Processing/Quality Levels 

Based on the substrate concept maps produced, geological basic disposition maps 
for different hazard-relevant process groups (hydrological processes and 
spontaneous mass movements) can now be derived in the following manner: 

In identifying areas of different basic geological susceptibility, the primary focus of 
investigation was the soil characteristics (grain distribution, rock texture, predominant 
grain size), on the basis of which, relevant properties, or as the case may be specific 
values of soils can be assessed relatively under the inclusion of data from literature.  

This produced, for example, the following critical slope angles, above which a slope 
can be considered process-susceptible (irrespective of cohesion, pore water 
pressure, and other factors that have similarly destabilizing effects): 

 Clay, silty clay     (substrates 24, 25)   >15° 

 Silt, sandy silt    (substrates 23)  >20° 

 Silty sand, clay-rich sand   (substrates 14)      >25° 

 Sand, gravel, and their combination  (substrates 11, 12, 13) >30° 

If there was a basic disposition to surface runoff, the assessable hydraulic 
conductivity (Kf) was the decisive indicator. In assessing basic disposition to 
spontaneous mass movements in soil, the angle of friction (angle of internal ϕ`) was 
used. Depending on the process group considered, the result was an 
aggregation/reclassification into soil provinces with comparable substrate 
characteristics Tab. 5.1.2-1 and Fig. 5.1.2-1). 

In each case, the following 4 substrate provinces were found for the process-related 
basic dispositions : 

Surface runoff (SOF) 

 1: no surface runoff, highly unlikely 

 2: very little surface runoff, rare, relatively unlikely 

 3: surface runoff possible, relatively likely 

 4: heavy surface runoff possible, highly likely 

Disposition to spontaneous mass movements in soil (RutDisp) 

 1: small landslide susceptibility (ϕ` ≥ 30°) 

 2: medium landslide susceptibility (30° > ϕ` ≥ 25°) 
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 3: high landslide susceptibility (25° > ϕ` ≥ 20°) 

 4: very high landslide susceptibility (ϕ` < 20°) 

 

Tab. 5.1.2-1: Reclassification of substrate classes into areas of comparable soil characteristics (Kf [-] 

und ϕ`[°]) and basic process disposition (surface runoff (SOF) and spontaneous landslides (RutDisp)) 

 

Soil type/class Kf [-] SOF [-] ϕ` [°] SlideSusc [-] 
11 4 1 30 1 
12 3 2 30 1 
13 2 2 30 1 
14 2 3 25 2 
23 2 3 20 3 
24 1 4 15 4 
25 1 4 15 4 

 

The substrate conceptual maps, and thus also the process-based basic susceptibility 
maps, are of course subject to considerable uncertainty. For example, the Geological 
Map, an important database and the only generally accessible, surface-covering 
database for the geosphere in the project area, is available solely on a scale of 
1:50,000. The substrate conceptual maps were produced on the basis of expert 
knowledge and general, regionally specific rules, and distinctive local features, such 
as dominant denudation processes, cannot therefore be accounted for.  

 

  
 

a.) geological susceptibility maps “high level” 
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b.) geological susceptibility maps “middle level” 

 

  
 
c.) geological susceptibility maps “low level” 

 
 

Fig. 5.1.2-1: Basic disposition maps for different process groups (spontaneous mass movements in soil 

(left) and surface runoff (right), and different processing/quality levels (a.) to (c.) 

 

5.2. Soil Map Based on the eBod and a Forest Site 
Classification (BFW) 

When analyzing landslide susceptibility, basic information regarding the thickness of 
the soil and loose material, the physical behaviour (inner friction angle) and the water 
supply is certainly of high relevance. However, standard maps referring to these 
datasets are available neither in Austria nor in most other countries. Hence, efforts 
are made to develop these maps from other datasets. The Austrian Agricultural Soil 
Map and the Forest Site Maps contain basic soil information. The aim of this part of 
the project was to find out, whether this soil information can enhance the database 
for landslide-modelling. 
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5.2.1. Introduction: eBod  

The Agricultural Soil Map which is divided into 219 mapping units, covers all 
agriculturally used areas of Austria; except are mountain pastures and hay meadows 
at high altitudes. The first survey of the soil mapping has been largely completed. 
The results of existing soil maps are available in analogue and digital form. Hence, in 
Austria, an almost area-wide, consistent (standardized) comprehensive map, 
describing the soils of the agriculturally used areas is available.  

The soil mapping units are displayed as polygons. Within their boundaries the site 
parameters vary only in a small defined range. In addition to defining parameters of a 
more general nature such as slope inclination and groundwater depth, depth of 
horizon boundaries, those maps include also horizon specific parameters like texture 
and gravel content, the content of calcium carbonate and humus. On the basis of 
soundings and morphologic attributes of the terrain, the surveyor charts the 
distribution of the soil type units. 

For each soil unit, at least one profile pit has to be opened in order to get a 
comprehensive description and to take soil samples for laboratory analysis 
(Bundesamt für Bodenkartierung und Bodenwirtschaft, 1967) 

From 1998 onwards, the maps have been continuously transferred into a GIS system 
and since 2004 a web application (eBod, Fig. 5.2.1-1) is available. 

 

 

Fig. 5.2.1-1: Digital Soil Map of Austria (eBod, status 2010): Map section Gasen and surroundings – 

thematic layer of soil water conditions 
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This application is regularly updated and expanded with thematic maps, displaying 
for example the soil water status or soil erosion. Basic geodata like satellite images 
and aerial photos are additionally provided. The scale is variable, however, it is 
recommended to avoid a resolution lower than 1.10.000. When using a scale larger 
than 1: 30.000 the application will automatically switch to a raster image (cell size: 50 
m) allowing overviews on a regional scale. 

The test area (communities of Gasen and Haslau) is located in the mapping district 
164 „Birkfeld”, which was mapped in the early 1980ies.  

 

5.2.2. Introduction: Forest Site Map  

Forest site mapping in Austria uses information on topography, climate, geology, soil 
and vegetation. Contrary to the Agricultural Soil Mapping (eBod), Forest Site Maps 
are only available for parts of Austria. They cover some 15% of the forests, have 
been accomplished by public authorities and private institutions (owners) and show 
different scales and varying intensity of soil information (Schwarz, et al. 2001). 

The Forest Site Map (scale 1:25.000) used for this investigation was published by 
BFW (Jelem, 1960). It comprises 35 different site units. The names of the units refer 
to the assessed parameters and – as in most Forest Site Maps - the site specific 
natural tree species (e.g.: “montane zone: spruce-larch-fir-forest on shaded slopes 
with rendzina”). 

 

5.2.3. Soils and Soil Physics in the Test Area 

Generally, the mapping units within the test area do not differ significantly. Because 
of the absence of glacial erosion, the coverage of loose sediments is unusually thick. 
On the slopes, soil development is strongly influenced / shaped by colluvial 
processes. Therefore, slopes are covered by more or less (abundant) thick mantles 
of very loose, coarse or fine colluvial material originating mainly from weathering of 
gneiss, mica schists and phyllits. The dominating soil types are siliceous brown soils 
of loose sediments, mostly showing colluvial influence (Fig. 5.2.3-1). The soil texture 
is loamy sand or sandy silt with a gravel content of about 10 to 70 percent.  

A random sample field survey concerning eBod, revealed soils characterized by an 
extremely low bulk density and the lack of aggregation stability. Since the soil units in 
the test area do not differ significantly, also soil parameters like texture, gravel 
content and bulk density are unlikely to vary considerably. 
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Fig. 5.2.3-1: Typical, abundant colluvial siliceous brown soil of loose sediments with explicit colluvial 

influence shown in a soil profile and starting point of a landslide in the test area 

 

Platy structure and the high mica content suggest low inner friction angles. In the 
literature, a relationship between soil parameters and the shear parameters of the 
soils is documented (e.g. Schnell 1984). To use this information, it was necessary to 
convert the relations of soil size fractions’ volume according to texture information 
into relations by weight following factors:  

Coarse material:  2,5 

Sand:    1,5 

Silt:    2,0 

Clay:    2,5 

The calculated results for the soil types in the test-area are shown in Tab. 5.2.3-1. 
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Tab. 5.2.3-1: Classification according to DIN 18196 and estimation of shear parameters according to 

Schnell (1984) for the soil units in the test-area 

c q
from to [kN/m²] [ °]

a 0 15/30 31 22 39 7 100 31 46 UL 5 35
15/30 89 4 7 1 100 89 8 GU 0 43

b 0 15/30 20 40 31 9 100 20 40 SU- 10 32
15/30 50/70 32 34 26 8 100 32 34 SU- 10 32
50/70 89 5 4 1 100 89 6 GU 0 43

c 0 10/25 13 34 43 9 100 13 52 UL 5 35
10/25 35/45 54 23 18 5 100 54 23 GU- 5 35
35/45 89 5 4 1 100 89 6 GU 0 43

d 0 15/30 13 34 43 9 100 13 52 UL 5 35
15/30 45/65 32 27 34 7 100 32 41 UL 5 35
45/65 89 4 6 1 100 89 7 GU 0 43

e 0 15/25 14 41 33 13 100 14 45 UL 5 35
15/25 45/90 20 38 30 12 100 20 42 UL 5 35
45/90 89 5 4 2 100 89 6 GU 0 43

f 0 15/30 20 32 40 9 100 20 49 UL 5 35
15/30 70/90 20 32 40 9 100 20 49 UL 5 35
70/90 53 18 23 5 100 53 28 GU- 5 35

g 0 15/35 14 41 33 13 100 14 45 UL 5 35
15/35 80/100 49 25 19 7 100 49 27 GU- 5 35

80/100 77 11 9 3 100 77 12 GU 0 43

h 0 15/25 32 33 26 10 100 32 35 SU- 10 32
15/25 50/70 19 31 28 22 100 19 50 UM 10 33
50/70 62 13 13 12 100 62 25 GU- 5 35

i 0 15/25 20 38 30 12 100 20 42 UL 5 35
15/25 45/55 31 29 25 14 100 31 40 SU- 10 32
45/55 68 15 12 5 100 68 17 GU- 5 35

j 0 15/25 7 27 50 17 100 7 66 UL 5 35
15/25 45/65 25 22 40 14 100 25 53 UL 5 35
45/65 53 18 23 5 100 53 28 GU- 5 35

k 0 20/30 10 31 43 16 100 10 59 UL 5 35
20/30 80/90 10 31 43 16 100 10 59 UL 5 35
80/90 10 31 43 16 100 10 59 UL 5 35

l 0 15/20 4 49 39 9 100 4 48 UL 5 35
15/20 50/60 7 47 38 8 100 7 46 UL 5 35
50/60 75/85 7 47 38 8 100 7 46 UL 5 35
75/85 89 6 4 1 100 89 5 GW - 45

m 0 15/20 32 34 26 8 100 32 34 SU- 10 32
15/20 20/30 64 18 14 4 100 64 18 GU- 5 35
20/30 50 89 5 4 1 100 89 6 GU 0 43

n 0 15/25 0 48 38 14 100 0 52 UL 5 35
15/25 75/85 0 48 38 14 100 0 52 UL 5 35
75/85 7 45 35 13 100 7 49 UL 5 35

o 0 20/40 6 20 64 9 100 6 73 UL 5 35
20/40 70/90 6 20 64 9 100 6 73 UL 5 35
70/90 0 22 68 10 100 0 78 UL 5 35

p 0 15/25 20 38 30 12 100 20 42 UL 5 35
15/25 89 5 4 2 100 89 6 GU 0 43

shear parameter
horizon depth

weight percent of total soil 

> 2 < 0,06
groupcoarse 

fraction
sand silt clay sumu

n
it
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The resulting shear parameters show only low variability, compared to the 
uncertainties originating from the classification of the input parameters.  

Soil units are dominated by sand and silt and show medium to high gravel content. 
Soil depth varies widely between 10 and more than 100cm and is limited by the 
occurrence of predominant gravel content.  

Of high relevance to slope stability and landslide-triggering is the presence of wet 
spots in the test area - frequently located at the lower parts of slopes. These spots 
are caused by pressure water - in case of intense rain the soils may lose cohesion 
and liquefy. The occurrence of these wet spots led to the classification of soil-unit-
complexes within this mapping district (eBod). They typically show a gley horizon 
within the profile.  

The event of 2005 suggests that these areas have frequently been starting zones of 
landslides. As these wet spots are only mapped partially within the eBod and are not 
recorded within the Forest Site Map, models estimating the susceptibility of slopes 
lack probably important information when using this dataset. 

 

5.2.4. Soil Units and Correlation to Landslide Susceptibility 

The landslide database was controlled by means of orthophotos and partially 
reappraised concerning land use and anthropogenic influence. Attributes concerning 
land use and vegetation (open land, forest, distances) were determined to analyse 
several effects of forest vegetation to the sliding disposition, like e.g. the influence of 
forest edges. 

For a first survey to find out the influence of soil and site unit, the relative frequency 
of landslide starting zones in relation to the area of the respective unit was 
quantified. As Fig. 5.2.4-1 shows, the quotient of these two figures differs clearly 
between different units of eBod. 

First investigations showed a clear correlation between the frequency of the 
observed landslides and the soil units of the agricultural soil mapping (Andrecs et al. 
2007, Fig. 5.2.4-1).  

 



AdaptSlide 44 

 

units agricultural soil mapping 
relative frequency of landslides and proportion of soil unit area of test area 
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Fig. 5.2.4-1: Observed landslides in different soil units (eBod) in relation to the percentage of the area 

 

Fig. 5.2.4-1 shows a concentration of landslides e.g. in soil unit 29, which is situated 
predominantly at back slopes and ditches. The high slope water supply in these 
areas causes high pore water pressures reducing cohesion and may lead to so 
called “slope explosions”. In contrast, e.g. soil unit 22 shows low landslide densities 
because of the situation on hill slopes and high permeability of the soils in this unit. 

Clear differences in the frequency of the observed landslides could also be detected 
between the forest site mapping units (Fig. 5.2.4-2).  

units forest site mapping
relative frequency of landslides and proportion of site unit area of test area 
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Fig. 5.2.4-2: Observed landslides in different forest site units (Forest Site Map) in relation to the 

percentage of the area 
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Fig. 5.2.4-2 shows a concentration of landslides especially in the forest site unit 34, 
which is located in ditches with colluvial accumulation of loose material. Conspicuous 
low slide densities are found e.g. in unit 22, which is situated on ridges and upper 
slopes on harder phyllits with higher quartz percentages and poor water supply. 

The number of landslides within the soil and site units differ from the number at 
hypothesized equal distribution at the 0,1% level of significance.  

Furthermore, it showed that about 70% of the observed land slides were influenced 
by road building (roads and road embankment). Within the forest, the proportion was 
even greater (75%). Due to the fact that we did not know, how extensively both total 
area and single units were affected by road construction the interaction between 
road construction and landslide-disposition could not be identified by statistical 
methods. 

 

5.2.5. Unified Soil Map  

The general aim of the project was to analyze the benefit of parameters and their 
combinations for the model results. Using area-wide calculating models to estimate 
the landslide susceptibility requires area-wide standardized parameter maps. Hence, 
the agricultural soil map and the Forest Site Map had to be merged into one map, 
new units referring to the agricultural as well as to the forest land had to be defined. 
However, this procedure causes a loss of information that has to be accepted. 

Firstly, units within the eBod and within the Forest Site Map were combined and – 
thereby - simplified. Implementing this, an important issue is that the topographic 
position of the different units should not account for the grouping. Only soil intrinsic 
parameters such as parent material, root penetration depth, soil texture and water 
regime were relevant. For the test area 16 new soil units were found (Tab. 5.2.5-1). 

Secondly, the two new, simplified maps had to be merged. This was achieved by 
comparing features of the units, while also considering the neighbourhood of the 
units.  
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Tab. 5.2.5-1: Unified soil units. The table shows the new units, the related units of eBod, Forest Site 

Map and World Reference Base for Soil Resources (WRB) classification 

Unit eBod – soil unit (BOFO) Forest Site 

Map (STO) 

WRB classification 

a 164010 28 Leptic Regosol 

b 164014,164015, 164016 29, 32, 35 Haplic Regosol 

c 111057, 164017, 164019 22, 23 Leptic Regosol 

d 164020, 164021, 164022, 164023, 164024, 164028 24 Leptic Regosol 

e 99041, 164025, 164026, 164027 26, 30, 31 Haplic Cambisol 

f 164029 33, 34 Haplic Cambisol 

g 164030, 164031 - Endogleyic Cambisol 

h 164050, 164053 - Haplic Regosol 

i 164051, 164052 25 Haplic Regosol 

j 164034, 164037 - Haplic Regosol 

k 164036 - Haplic Cambisol 

l 164039 - Endogleyic Regosol 

m - 21 Hypersceletic Leptosol 

n 164007 - Endogleyic Regosol 

o 164008 - Haplic Gleysol 

p 164012 - Hypersceletic Leptosol 

 

The characteristics of the new developed soil units are described below: 

 

Unit a: (STO: 28; BOFO: 164010)  

Slopes, ridges, terrain edges, strongly pending to steep 

Leptic Regosol from talus material, partly also from solid rock (limestone, dolomite, greywacke), highly 

calcareous, shallow 

Dry, high permeability, little water retention capacity 

0 - 15/30cm:  Silty sand or sandy silt 

 Coarse fraction medium to high 

15/30 cm +:  Coarse fraction predominant 

 

Unit b: (STO: 29, 32, 35; BOFO: 164014, 164015, 164016) 

From pending to steep 

Haplic Regosol from talus material (limestone, dolomite, lime schist), highly calcareous, medium deep 

Moderately dry, moderate to high permeability, moderate water retention capacity; forest: „fresh“  

0 - 15/30cm:   Silty sand or loamy sand 

 Coarse fraction medium 

15/30 – 50/70cm:  Silty sand or loamy sand 

 Coarse fraction medium to high 

50/70cm +:   Coarse fraction predominant 

 

Unit c: (STO: 22, 23; BOFO: 111057, 164017, 164019) 

Slopes, ridges, terrain edges, from even to steep 

Leptic Regosol from talus material or (brittle) rock (phyllite, gneiss, mica schist), non calcareous, (shallow to) 

medium deep 

Dry, high permeability, little to medium water retention capacity; forest: “fresh” 
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0 - 10/25cm:  Loamy sand or sandy silt 

 Coarse fraction low to medium  

10/25 – 35/45cm:  Loamy sand,  

 Coarse fraction high to very high 

35/45cm +:  Coarse fraction predominant or rock 

 

Unit d: (STO: 24; BOFO: 164020, 164021, 164022, 164023, 164024, 164028) 

Slopes, rarely hilltops, ridges, terrain edges; little pending to steep 

Leptic Regosol from talus material or from (brittle) rock (phyllite, gneiss, mica schist, rarely quarzite), non 

calcareous, moderately deep to deep 

Moderately dry, in small areas (little depressions or channels at the slope) water availability better, moderate 

to high permeability, moderate water retention capacity; forest: “fresh”  

0- 15/30cm:  Loamy sand or sandy silt  

 Coarse fraction low to medium 

15/30 – 45/65cm:  Loamy sand or sandy silt  

 Coarse fraction medium to high 

45/65cm +:  Coarse fraction predominant, partly also (bed)rock  

 

Unit e:(STO: 26, 30, 31; BOFO: 99041, 164025, 164026, 164027) 

Upper slopes to down slope positions, little pending to steep 

Haplic Cambisol from talus material or from brittle rock (phyllite, gneiss, mica schist), non calcareous, deep 

water availability good, moderate permeability, moderate to high water retention capacity; forest: “very fresh”  

0- 15/25cm:  Loamy sand  

 Coarse fraction low to medium 

15/25 – 45/90cm:  Loamy sand  

 Coarse fraction medium  

45/90cm +:  Coarse fraction predominant 

 

Unit f: (STO: 33, 34; BOFO: 164029) 

Bottom of slopes, gullies, gorges, lower slopes, strongly pending to steep,  

Haplic Cambisol from talus material (phyllite, gneiss, mica schist), non calcareous, deep  

Water availability good, moderate permeability, high water retention capacity; forest: “very fresh (to moist)”  

 

0 - 15/30cm:  Sandy silt or loamy sand  

 Coarse fraction medium  

15/30 – 70/90cm:  Sandy silt or loamy sand  

 Coarse fraction medium  

70/90cm +:  Sandy silt or loamy sand  

 Coarse fraction high to very high 

 

Unit g:(BOFO: 164030, 164031)  

Slope with little gullies, bottom of slopes, slope-depressions, at the edge of swelling muldes; very little to little 

pending  

Endogleyic Cambisol from talus material (phyllite, gneiss, mica schist), non calcareous, deep  

Moderately moist with pressurized water, high permeability, moderate water retention capacity;  

0 - 15/35cm:  Loamy sand  

 Coarse fraction low to medium  

15/35 – 80/100cm: Loamy sand, rarely sandy loam  

 Coarse fraction medium to very high 

80/100cm +:  Coarse fraction very high to predominant 
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Unit h (BOFO: 164050, 164053) 

Plantations, slopes, even to moderate inclination 

Haplic Regosol, soils dominated by (their) colour, from dark, brittle granite-phyllite, non calcareous, moderately 

deep to deep 

Moderately dry to good water availability, moderate permeability, moderate to high water retention capacity;  

0 - 15/25cm:  Loamy sand  

 Coarse fraction medium to high 

15/25 – 50/70cm:  Sandy loam 

 Coarse fraction medium 

50/70cm +:  Loamy sand, sandy loam or loam 

 Coarse fraction medium to predominant 

 

Unit i: (STO: 25) (BOFO: 164051, 164052) 

Slopes, strongly to highly pending 

Haplic Regosol, soils dominated by (their) colour, talus material (dark clay schist, partly also phyllite), non 

calcareous, moderately deep to deep 

Moderately dry, moderate to high permeability, moderate water retention capacity  

0 - 15/25cm:  Loamy sand  

 Coarse fraction medium 

15/25 – 45/55cm: Loamy sand or sandy loam 

 Coarse fraction medium to high 

45/55cm +:  Loamy sand 

 Coarse fraction high to predominant 

 

Unit j: (BOFO: 164034, 164037) 

Valley floors with gullies and troughs, alluvial fans, very little to little pending, rippled, humpy  

Haplic Regosol from fine above coarse alluvial material, non calcareous, moderately deep 

Moderately dry, high permeability, moderate water retention capacity  

0 - 15/25cm:  Loamy sand or silt 

 Coarse fraction low 

15/25– 45/65cm:  Loamy sand or silt 

 Coarse fraction low to high 

45/65cm +:  Coarse fraction predominant 

 

Unit k: (BOFO: 164036) 

Valley floors, even to very little pending  

Haplic Cambisol from fine alluvial or colluvial material, non calcareous, deep 

Water availability good, moderate permeability, high water retention capacity  

0 - 20/30cm:  Sandy silt, loamy sand or loamy silt 

 Coarse fraction low (medium) 

20/30– 80/90cm:  Sandy silt, loamy sand or loamy silt 

 Coarse fraction low (medium) 

0/90cm +:  Sandy silt, loamy sand or loamy silt 

 Coarse fraction low (medium) 

 

Unit l: (BOFO: 164039) 

Valley floors, alluvial fan, even to very little pending, gently wavy 

Endogleyic Regosol from fine alluvial and colluvial material, non calcareous, deep  

Moderately moist by pressure and ground water, high permeability, low water retention capacity 

0 - 15/20cm:  Silty sand or loamy sand  

 Partly low gravel content  
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15/20– 50/60cm:  Silty sand or loamy sand  

 Partly low gravel content  

50/60 - 75/85cm:  Silty sand or loamy sand  

 Partly low gravel content  

75/85cm +:  Predominant gravel 

 

Unit m: (STO: 21) 

Ridges and upper slopes 

Hyperskeletic Leptosol from phyllite, poor gneiss and schist, non calcareous, shallow  

Moderately dry, high permeability, little water retention capacity  

0 - 15/20cm:  Loamy sand or silty sand  

 Coarse fraction medium to high 

15/20– 20/30cm:  Silty sand or loamy sand  

 Coarse fraction very high 

20/30 – 50cm:  Silty sand or loamy sand  

 Coarse fraction predominant 

 50cm +:  Rock (debris) 

 

Unit n: (BOFO 164007) 

Valley floors, alluvial fans, even to very little pending  

Endogleyic Regosol, drained gleysol from fine alluvial material, non calcareous, deep 

Moderately moist by pressurized water and ground water, moderate permeability, high water retention 

capacity  

0 - 15/25cm:  Loamy sand 

15/25– 75/85cm:  Loamy sand 

75/85cm + Loamy sand 

 Coarse fraction low  

 

Unit o: (BOFO 164008) 

Troughs and gullies on valley floors and alluvial fans, even to very little pending, gently rippled, humpy  

Haplic Gleysol from fine alluvial material, non calcareous, deep 

Moist by pressurized water, moderate permeability, little water retention capacity  

0 - 20/40cm:  sandy silt  

 coarse fraction low 

20/40– 90/90cm:  sandy silt  

 coarse fraction low 

70/90cm +: sandy silt 

 

Unit p: (BOFO 164012) 

Valley floors, alluvial fans, even to little pending, mostly rippled, humpy, often next to channels 

Hyperskeletic Leptosol from coarse alluvial materiel (mica schist, gneiss, quartzite), non calcareous, shallow 

dry, high permeability, little water retention capacity  

0 - 15/25cm:  loamy sand, coarse fraction medium 

as of 15/25cm:  coarse fraction predominant  
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When merging the polygons of the two datasets three different cases were found: 

1. Areas with data of one of the two datasets (e.g. eBod Fig. 5.2.5-1). 

2. Areas with data of both of the datasets: These areas are mostly very small 
and occur along the land use types where they overlap. They were attached to 
one of the neighbouring units by a GIS algorithm, overtaking the eBod 
information because of the assumed higher quality. 

3. Areas without data: More than 10% of the area lacked any information (Fig. 
5.2.5-3). This is due to the fact that the agricultural soil map did not cover all 
of the extensively used grassland, and the fact, that the Forest Soil Map did 
not cover the whole test area. Additionally, stripes and smaller areas along the 
two land use types due to geometric impreciseness were observed. In these 
cases, units and information were assigned by expert knowledge, considering 
the information of the surrounding polygons.  

Merging eBod and the Forest Site Map did not meet the demand for a map covering 
the whole area.  

 

 

Fig. 5.2.5-1: Area-Coverage eBod (brown)  

 

Fig. 5.2.5-2: Additional Coverage Forest Site Map (green) 
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Fig. 5.2.5-3: Areas with lacking soil information. Merging eBod and the Forest Site Map did not meet 

the demand for a map covering the whole area 

 

The resulting unified area-wide map, processed in the described way is shown in Fig. 
5.2.5-4 

 

 

Fig. 5.2.5-4: Unified (merged and simplified) soil map 
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5.2.6. Landslide Disposition Map  

The units were assigned an index for landslide susceptibility between 1 (low 
disposition) to 5 (high disposition) shown in Fig. 5.2.6-1. Here, especially soil depth, 
parent material, content of coarse material and water conditions were used. The 
allocation of soil units (Fig. 5.2.5-4) to disposition classes (Fig. 5.2.6-1) is based on 
expert knowledge, the way they are merged is shown in Tab. 5.2.5-2. 

Tab. 5.2.6-1: Generated classes of landslide disposition based on the merged and simplified, area-

wide soil units 

landslide disposition 1 2 3 4 5

unit a,m,n,o,p k b,c,d,h,,j e,i,l f,g  

 

 

Fig. 5.2.6-1: Disposition for land slides in the unified map (assigned by expert knowledge)  

 

The unified soil maps as well as hence generated disposition map are input-
parameters for the comparison and evaluation of databases and database 
combinations with different approaches (Chapter 7 and 8). The soilmap is a 
considerable source of information for physically based approaches like the SINMAP 
model (Chapter 7.5). 
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5.3. Remote Sensing Data (JR) 

Due to technological progress and new sensors the potential of Remote Sensing 
Data with regard to environmental applications has grown significantly within the past 
few years. The main advantage of Remote Sensing Data is the possibility to perform 
area-wide investigations and analyses on an objective basis even on inaccessible 
areas. Remote sensing can replace costly and slow data collection on the ground, 
ensuring in the process that areas or objects are not disturbed. 

Within the frame of AdaptSlide the following data sources were used: 

• Satellite Data 

• Aerial Photographs 

• Airborne Laserscanner (LiDAR – Light Detection and Ranging) 

 

5.3.1. Satellite Data  

Available land cover data of the test area do not represent small-scale land cover 
heterogeneities. This is especially true for the forest / non-forest classification based 
on the Digital Cadastral Map. Aiming at reducing this deficit high-resolution satellite 
data were acquired and classified.  

 

Fig. 5.3.1-1: SPOT5 scene taken on 30-09-2007 covering the test area Gasen-Haslau and most parts 

of the Fischbacher Alps (false colour representation; yellow: borders of communities Gasen and 

Haslau) 
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An archived SPOT5 scene taken on 30th of September 2007 best met the demands 
with respect to illumination and cloud cover (Fig. 5.3.1-1). Orbital platforms collect 
and transmit data from different parts of the electromagnetic spectrum. The data 
from the french SPOT5 system offer a resolution of 2,5 to 5 meters in panchromatic 
mode and 10 meters in multispectral mode covering wavelengths of 0,50 – 0,59; 
0,61 – 0,68 and 0,79 – 0,89 µm (= green, red, near Infrared). The additional band at 
mid-infrared wavelengths (1,58 – 1,75 µm with 20 meters spatial resolution) provides 
efficient capabilities for vegetation surveys. The data do not only allow the 
classification with regard to the main tree species but also a rough assessment of 
growth classes and crown coverage.  

Because of the late acquisition date of the SPOT5 scene additionally an AVNIR 
scene (Advanced Visible and Near Infrared Radiometer) of the Japanese ALOS 
system which was available at the institute was used. This sensor also provides data 
with a spatial resolution of 10 m in multispectral mode. The available scene which 
was slightly affected by clouds was taken on 15th of July 2007, thus showing 
excellent illumination conditions (Fig. 5.3.1-2). 

 

 

Fig. 5.3.1-2: Detail of unprocessed AVNIR scene taken on 15-07-2007 covering the test area Gasen-

Haslau (false colour representation; yellow: borders of communities Gasen and Haslau) 

 

5.3.1.1 Data Preprocessing - Geocoding 

The test site is located in a mountainous region which brings about that it is a 
prerequisite to remove the displacement errors caused by the topographic relief. In 
order to optimize the absolute geometric location accuracy of the geocoded image 
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data, these errors are removed through the integration of a Digital Elevation Model 
(DEM), i.e. the consideration of terrain relief information. The spatial database of the 
geocoding was the DEM provided by the Austrian Federal Office for Metrology and 
Surveying (BEV) with a 10 m resolution. 

This preprocessing step is executed by means of ground control points, with the 
points representing an approximately homogenous distribution with respect to 
position and height. The geocoding was performed with the RSG software (Remote 
Sensing software package Graz) of JOANNEUM RESARCH.  

 

5.3.1.2 Data Preprocessing - Topographic Normalization 

In mountainous terrains the illumination and reflexion within an image is strongly 
influenced by the topography. These variations have to be removed, in order to 
achieve that two objects having the same reflectance properties show the same 
spectral signature despite their different orientation to the sun's position. In this 
project, a new correction method was used for topographic normalization 
implementing an incidence normalization filter. This filter is based on the finding that 
the gray-values of a specific land-cover class show a linear dependency on the 
incidence angle of the sun relative to the underlying DEM. This fact is used in this 
program to calculate a unique slope and offset value K for every pixel in its grey-
value/incidence angle feature space. Once a specific K value has been calculated for 
a pixel, a normalized gray-value is calculated by normalisation to the default 
incidence angle. The result of the normalization process can be observed through 
the disappearance of the “3D” effect, which is still present in the raw image. Based 
on these results, the analysis of the land cover signatures can be performed on an 
equal basis.  

 

5.3.1.3 Classification 

Following the data pre-processing the supervised land cover classification was 
performed. For SPOT5 and AVNIR imagery with a spatial resolution of 10 x 10 m the 
objects of interest are smaller than the pixel size. In this case, pixel-based 
approaches classifying the spectral signature of each pixel are well applicable for the 
derivation of landcover and especially forest parameters. Previous investigations 
(e.g. Schardt & Schmitt 1996, Granica et al. 2000, 2004) have shown very good 
results regarding the differentiation of tree species. This is illustrated in Fig. 5.3.1.3-
1: the different species show well separated clusters in the feature space of the NIR 
(Near InfraRed) and the MIR (Mid InfraRed) band of the SPOT5 image. 

The signature analysis has been performed on a number of bands and channels 
derived from the SPOT5 data. The parametric signatures are based on statistical 
parameters, e.g. mean and covariance matrix, that are derived from training 
samples. The training sites required for the supervised classification were selected 
on the basis of aerial photographs and by a ground truthing campaign, and according 
to the results of the signature analysis. Statistics have been derived for each training 
site as well as independently for each verification site and analyses on histograms 
and spectral curves have been made.  

The spectral bands of the satellite images were taken as input features for the 
classification using a Maximum-Likelihood (ML) classifier. The ML decision rule is 
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based on the probability that a pixel belongs to a particular class. The basic equation 
assumes that these probabilities are equal for all classes, and that the classes have 
normal distributions. The variability of classes is taken into account by using the 
covariance matrix. Finally, to achieve the classification result, a detailed evaluation of 
several classification runs based on different parameter settings and combinations of 
training areas was performed. 

 

 

The result of the tree type classification with the original 10 m spatial resolution is 
shown in Fig. 5.3.1.3-1, the result after the aggregation to 50 m (based on majority) 
is shown in Fig. 5.3.1.3-3. The nomenclature of the tree type distribution is based on 
the percentage of coniferous (i.e.: sum of coniferous / (sum of coniferous + sum of 
broadleaf)). Pure tree types consist of more than 90 % of this particular species. The 
nomenclature is given in Fig. 5.3.1.3-2. 

The result shows a high predominance of spruce stands in most parts of the study 
area. Larch is intermingled frequently and there are even stands dominated by larch. 
Pine can be found as well widespread in different mixture ratios. Deciduous 
woodland commonly is restricted to minor patches and strips often accompanying 
streams and ditches or the borders of the forest. Broadleaves can not be 
differentiated by means of spectral analysis. Based on field verifications beech, 
maple, birch and wild cherry were identified as dominating broadleaves in the study 
area. 

The spectral signature of each pixel does not only contain tree species related 
information. Other factors affecting pixel values are for example age of trees, density 
of trees as well as the vertical structure of the forest, insect calamities or drought 
stress (Granica et al. 2004). This information can be used for the further 
parameterisation and subdivision of forest areas aiming at the analysis of the 
influence of the vegetation on landslide susceptibility. As the stage of stand 
development and the crown coverage were evaluated as relevant indicators, these 
parameters were derived from the spectral signature of each pixel of the available 
satellite data as well.  

For the stand development four classes were defined (ref. to Fig. 5.3.1.3-4). The 
older classes ('timber' and 'old timber') are dominating the forests in most parts of the 
study area. 

Fig. 5.3.1.3-1: two-dimensional representation of well 

separated training clusters in the feature space of the 

NIR (Near InfraRed, x-axis) and the MIR (Mid 

InfraRed, y-axis) band: green = spruce; yellow = 

larch; magenta = broadleaf 
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With regard to crown coverage as well four different classes are shown (ref. to Fig. 
5.3.1.3-5). Crown coverage < 30 % is not considered 'forest area' but is classified 
open area. The dominating density class is 61 – 80 %. 

For the accuracy assessment of these classifications the following aspects have to 
be taken into account:  

• The stand development classes could be separated with higher accuracy than 
the crown coverage classes for coniferous.  

• Generally the classification of coniferous woodland can be considered to be 
derived with higher accuracy than for deciduous woodland.  

 

 

Fig. 5.3.1.3-2: Result of the tree type classification based on satellite data with high spatial resolution 

(SPOT5, ALOS)  
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Fig. 5.3.1.3-3: Result of the tree type classification based on satellite data with high spatial resolution 

(SPOT5, ALOS) after aggregation to 50 m (based on majority) 

 

The results of the crown coverage and the stand development classification with the 
original 10 m spatial resolution as well as the nomenclatures are shown in Fig. 
5.3.1.3-4 and Fig. 5.3.1.3-5 respectively.  

 

Fig. 5.3.1.3-4: Result of the stand development classification based on satellite data with high spatial 

resolution (SPOT5, ALOS)  
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Fig. 5.3.1.3-5: Result of the crown coverage classification based on satellite data with high spatial 

resolution (SPOT5, ALOS) 

 

The protective function of the forest cover in the study area with regard to shallow 
landslides is clearly detectable by means of the validation of the modelling results 
(Chapter 7.2 – 7.4).  

The classifications of forest type, crown coverage and stand development were 
combined to an advanced process related forest dataset (“Wald_Sat_lh”). 
Characteristics of the root system (shallow root systems of e.g. spruce vs. deep tap 
root systems of e.g. larch and pine) and the capacity of evapotranspiration can be 
seen as most relevant with respect to the triggering of shallow landslides. 

The forest types were reclassified to four types considering the above mentioned 
process relevant characteristics: 

• coniferous dominated by spruce 

• coniferous dominated by larch and/or pine 

• mixture of coniferous and broadleaf 

• forest dominated by broadleaves 

The class “clouds” could be eliminated by visual interpretation of aerial photographs. 

The original stand development classification (4 classes, ref. to Fig. 5.3.1.3-4) was 
kept assuming increase of stability with higher stand development classes.  

By combining forest type and stand development four tentative classes were defined: 
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• Class 1: Stand class 1, all forest types + Stand class 2, forest type 1 

• Class 2: Stand class 2, forest type 2, 3, 4 + Stand class 3, forest type 1 

• Class 3: Stand class 3, forest type 2, 3 + Stand class 4, forest type 1 

• Class 4: Stand class 3, forest type 4 + Stand class 4, forest type 2, 3, 4 

 

Fig. 5.3.1.3-6: Forest classification “Wald_Sat_lh” with four stability classes under consideration of 

additional forest parameters (forest type, crown coverage, stand development) 

 

As well the original crown coverage classification (4 classes, ref. to Fig. 5.3.1.3-5) 
was kept assuming increase of stability with higher crown coverage classes. This 
hypothesis was confirmed by the bivariate statistics except for crown coverage 
classes 3 and 4 which hence were merged. The final stability classes were defined 
by adding correction factors for crown coverage classes 3 (+1), 4 and 5 (+2). This 
procedure theoretically results in 6 final classes with only the classes 3, 4, 5 and 6 
remaining in the study area. These classes were redefined for the final four stability 
classes of “Wald_Sat_lh”. 

Finally the non-forested areas were classified as well. Four classes regarding to 
vegetation density were defined (Fig. 5.3.1.3-7) but these results were not taken into 
account for the modelling procedure. 
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Fig. 5.3.1.3-7: Result of the classification of non-forested areas based on satellite data with high spatial 

resolution (SPOT5, ALOS) 

 

From the landcover classification finally three different datasets were created as 
input to the modelling procedure. 

1. A forest mask aggregated to 50 m with forest defined when at least 6 out of 
original 25 pixels are classified as forest (“Wald_Sat_lg”, Fig. 5.3.1.3-8). 

2. A forest mask aggregated to 50 m with forest defined when at least 20 out of 
original 25 pixels (= 80 %) are classified as forest (“worst case scenario”, 
“Wald_Sat_lg_80” Fig. 5.3.1.3-9). 

3. A forest classification with four stability classes under consideration of 
additional forest parameters (forest type, crown coverage, stand development, 
“Wald_Sat_lh”, Fig. 5.3.1.3-6). 

Generally it has to be stated that a lot of information supposed to be relevant for the 
triggering of shallow landslides was lost by the aggregation process (cf. Fig. 5.3.1.3-2 
and Fig. 5.3.1.3-3). 



AdaptSlide 62 

 

 

Fig. 5.3.1.3-8: Forest mask “Wald_Sat_lg” based on the classification of satellite data after aggregation 

to 50 m with forest defined when at least 6 out of 25 pixels are classified as forest 

Fig. 5.3.1.3-9: Forest mask “Wald_Sat_lg_80” based on the classification of satellite data after 

aggregation to 50 m with forest defined when at least 20 out of 25 pixels are classified as forest  
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5.3.2. Aerial Photographs 

Within the first phase of the project “Low-Cost Aerial Data Acquisition Platform for 
Disaster Operations” aerial photographs were taken from the most affected areas in 
Gasen and Haslau approximately 15 days after the event. This was performed within 
the frame of a pilot study funded by the Styrian government aiming at the rapid 
acquisition of image data, and with respect to ortho-rectification, mosaicing and 
associated accuracy analysis of the data (Wack et al. 2006).  

The data capture was carried out with a high resolution digital camera (12 mega 
pixel) in connection with a L1L2 GPS phase receiver on board of a helicopter. 
Wherever possible, the images were captured with an overlap of about 70 % in order 
to enable the generation of a 3D surface model. The average height above ground 
was 400 m and yielded a ground sampling distance (GSD) of about 10 centimeters in 
nadir, and appropriately increasing with increasing off-nadir look angle. The images 
were taken at an oblique look direction from onboard the helicopter, and span an off-
nadir angle range between about 0 and 60 degrees. 

 

Fig. 5.3.2-1: Coverage of the aerial photographs taken in September 2005 within the borders of the 

communities of Gasen and Haslau (red) 

 

For the coverage of three strongly affected areas (Fig. 5.3.2-1), three overlapping 
strips needed to be flown for each of them. In total more than 200 images were 
necessary to cover the entire area. A close-up of overlapping input images as 
acquired from three flight tracks (two images each per image strip) is shown in Fig. 
5.3.2-2. The overlapping images show distinct geometric distortions among the 
individual image strips due to imaging and terrain effects, but also radiometric 
differences due to the disposition between camera exposure (view) and sun 
illumination. 
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For further processing, ground control points (GCPs) had to be made available in 
order to refine/adjust the unknown elements of the exterior orientation by means of a 
photogrammetric image block adjustment. According to the quality of the reference 
ortho-photo mosaic and elevation data on the one hand, and to the kind of features 
to be used due to vegetation coverage, the location accuracy of the GCPs can be 
assumed to be about 2 m in planimetry and height. 

 

Fig. 5.3.2-2: Close-up of overlapping input images as acquired from three flight tracks 

 

Based on the refined exterior orientation resulting from the block adjustment and 
using the reference DEM the individual images were ortho-rectified. These ortho-
rectified images still show different displacement of outstanding objects like trees 
and buildings, in particular in case of different viewing direction (Fig. 5.3.2-2). In 
order to properly mosaic the images, the look angle information of each individual 
image was included into the mosaicing procedure. This approach yields an image 
mosaic with acceptable geometric fidelity. No manual interaction (e.g. to define cut-
lines between overlapping ortho images) is necessary. Concerning its radiometric 
characteristics, however, the mosaic shows distinct in-homogeneities depending on 
individual camera exposure. The results achieved by the feasibility study have shown 
that a low cost image acquisition solution as used in this campaign is fairly sufficient 
for rapid hazard mapping, in order to e.g. identify damaged or endangered areas and 
infrastructure.  

The resulting ortho-photo mosaics were visually interpreted to identify landslides 
using overlays with existing Digital Terrain Models (LiDAR DTM where available 
(refer to Chapter 5.3.3), DTM of JOANNEUM RESEARCH for remaining areas). 
Where possible, a subdivision was performed to define triggering, transport and 
deposition zones. The types of mass movements were classified according the 
approach of the Geological Survey. Finally the confidence level of the information 
was classified according the following scheme: 
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• assured: the identified feature is related to a landslide with high probability, 
the type of mass movement can be classified in most cases 

• assumed: the identified feature is probably related to a landslide but 
misinterpretations may occur, the type of mass movement can be classified in 
some cases 

• indicated: the identified feature may be related to a landslide but may be 
related to different processes like e.g. building activities as well; the type of 
mass movement can not be classified 

Due to the delayed date of the data acquisition (15 days after the event) 
misinterpretations came about mainly in those areas which were affected by 
remedial measures and building activities. 

Based on the analysis of the ortho-photo mosaics taken in September 2005 
altogether 276 features were assigned to mass movements. Besides the ortho-
photos from the described pilot study area wide visual interpretations of ortho-photos 
taken in 1996 (black and white, ground resolution 0,5 m) and 2003 (color, ground 
resolution 0,25 m) which were provided by the Geographic Information System Styria 
were performed. These analyses resulted in 31 (1996) and 167 (2003) features 
respectively which could be attributed to landslides (ref. to section 4.1). 

 

5.3.3. LiDAR – Data: Assessement of Potential 

Laser scanning (LiDAR = Light Detection And Ranging) is an active measurement 
system to acquire spatial information to describe the earth’s surface. It is based on 
the physical principle of run-time measurement of the emitted, reflected and received 
laser pulse (Wehr & Lohr 1999). The reflection on the surface delivers important 
information about the characteristics due to different scattering of the signal (cf. 
Wagner et al. 2003). An important advantage of the LiDAR system is the possibility 
to acquire more than one reflection of each pulse. In forested areas the first 
reflection normally is returned from the canopy, giving information about the forest 
surface. The pulse can further penetrate the crown and is finally reflected from the 
ground delivering information about the height of the terrain. From these data a 
highly-accurate DTM also under densely forested areas can be generated (Wack & 
Wimmer 2002, Abraham & Adolt 2006). 

Products derived from LiDAR data therefore hold high potentials with regard to the 
analysis and assessment of natural hazards in two main aspects: 

• LiDAR DTMs are holding new possibilities for geomorphological analyses. 

• LiDAR Digital Surface Models (DSMs) and Vegetation Height Models (VHMs) 
bring about new possibilities for the derivation of vegetation and forest 
parameters.  
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Fig. 5.3.3-1: Coverage of the LiDAR data within the test area (red lines: political borders of 

communities) 

 

Airborne Laserscanning was arranged for the study area after the precipitation event 
of August 2005 by the Austrian Federal Ministry of Agriculture, Forestry, Environment 
and Water Management. Because of financial reasons unfortunately only a part of 
the study area was covered on the occasion of this campaign (Fig. 5.3.3-1). As the 
current LiDAR campaign of the Province of Styria did not cover the northern part of 
Eastern Styria so far, no area wide LiDAR dataset is available. Therefore despite the 
high potential LiDAR data offer were not considered for the modelling procedure in 
this study. 

 

 5.3.3.1 Geomorphological Potential 

Geomorphological features often represent signs of surface instability in different 
scales and magnitudes. However, most techniques to observe geomorphological 
features do have constraints in vegetated terrain due to disadvantageous data 
acquisition principles such as all optical sensors. The option to “eliminate” vegetation 
by using last pulse data and filtering to achieve a DTM in contrary to a DSM is a 
crucial advantage in geomorphological applications. Therefore LiDAR data show 
high potential in recognition of micro-scale geomorphic features. Nevertheless it has 
to be considered that even LiDAR data do have problems in very densely vegetated 
terrain – coarse point distributions lead to smoother surfaces after interpolation and 
do often not represent microfeatures correctly. LiDAR is used more frequently in 
geomorphological applications since the last decade (e.g. McKean & Roering 2003, 
Chigira et al. 2004, Sekiguchi & Sato 2004, Haneberg et al. 2005). These works also 
cover the aspect of mapping micro topography applied in landslide recognition and 
their quantitative assessment. 

With respect to landslide analyses two aspects are relevant: 

• identification of landslides using geomorphological indicators 
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• derivation of detailed maps of geomorphometric parameters (e.g. slope, 
curvature) necessary as input for susceptibility modelling 

One very promising approach aiming at the automatic detection of landslides is 
based on the calculation of surface roughness. This method was tested in some 
parts of the study area. 

The surface of most landslides is rougher, on a local scale of a few meters, than 
adjacent unfailed slopes. This characteristic can be exploited to automatically detect 
and map landslides. In some cases even information about landslide mechanics as 
manifested by internal deformation features is deducible. One technique to quantify 
local topographic surface roughness is to measure the variability in slope and aspect 
in local patches of the DTM. Following the approach of McKean & Roering (2003), 
unit vectors are constructed perpendicular to each cell in the DTM. The vectors are 
defined in three dimensions (using polar coordinates) by their direction cosines. 
Local variability of vector orientations is then evaluated statistically. Orientation 
statistics were calculated in small sampling windows of a fixed size that were moved 
over the DTM. By calculating the statistical variability of orientation of the unit vectors 
of all cells in the sampling window, the elevation matrix is replaced with a map of 
local topographic roughness. The effect of the size of sampling window was tested 
by varying the window width between 3 and 7 cells and varying the grid cell 
dimensions between 1 and 10 m. One result of a calculation which was carried out in 
the region south of the village of Gasen is presented in Fig. 5.3.3.1-1. 

 

Fig. 5.3.3.1-1: Result of calculation of surface roughness based on LiDAR – DTM south of village of 

Gasen (window width: 3 x 3 cells, spatial resolution: 5 m) 

 

Moreover geomorphological analyses of LiDAR DTMs may result in further relevant 
parameters with regard to the triggering of shallow landslides (e.g. forest roads and 
slope edges).  
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 5.3.3.2 Forestal Potential 

Vegetation remote sensing is a principal application of LiDAR. The calculation of a 
vegetation height model (VHM) can be performed by subtracting each DTM pixel 
value from the respective DSM pixel value representing the canopy surface of a 
forest. The result is a raster consisting of vegetation height values. Instead of using 
these pixel values directly, more significant information can be calculated by using 
objects of interest (e.g. individual tree crowns, tree groups or whole forest stands). 
According to the object of interest and to the calculation method, different heights 
can be obtained: maximum single tree height, mean stand height or the distribution 
of heights within a forest stand. The result can give valuable information about the 
age of a tree or forest stand, the structure of a forest stand, timber volume and even 
assortments. Tree age can be estimated by involving the height information directly 
from the data and an estimated mean annual growth (e.g. yield tables from 
literature). The structure of a forest stand can be estimated from the distribution of 
height values, whether it is an even-aged forest or a forest consisting of 
heterogeneously high trees. Finally, tree height is, among other factors, an important 
input variable for the calculation of timber volume. Aiming at automated subdivision 
of forest stands based on single tree detection from first pulse LiDAR data and 
SPOT5 satellite data, relevant parameters like stand wise average stem number, 
stem density or crown coverage were derived. An example of an automatic detection 
of single trees based on a LiDAR VHM which was carried out in the region south of 
the village of Gasen is given in Fig. 5.3.3.2-1. 

 

Fig. 5.3.3.2-1-3: Result of calculation of surface roughness based on LiDAR – DTM south of village of 

Gasen (window width: 3 x 3 cells, spatial resolution: 5 m) 
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5.4. Runoff Disposition Map (BFW) 

The water supply in the loose material represents a major factor for the investigation 
of the triggering parameters of spontaneous landslides. Both the amount of 
precipitation during storm events and the rate of infiltration into the loose material 
determine soil moisture and soil saturation. Thus, the information regarding the 
infiltration rate supports the evaluation of the slope susceptibility. 

To verify this assumption, a runoff map for the test area was compiled showing 
different levels of processing efforts (low, medium, high). 

 

5.4.1. Introduction 

Different approaches for differentiation of runoff contributing areas in alpine regions 
are available. 

Tables with ranges of runoff coefficients were first presented by Bunza and Schauer 
(1989). Rickli and Forster (1997) developed an approach for the assessment of 
runoff coefficients, using field data and interpretations of data from the literature. 
Löhmannsröben et al. (2000) described the most important factors influencing runoff 
behavior of different soil vegetation complexes, and named soil as the dominant 
factor for runoff behavior. Scherrer and Naef (2003), Naef et al. (2007) developed a 
sound approach for the characterization of dominant runoff processes on grassland 
areas. The application of their scheme requires comprehensive knowledge in the 
field of soil/plant/land-use and runoff development. For the assessment of woodland 
or sealed areas, this scheme can only be used with reservations.  

A manual for easy use by practitioners in the assessment of runoff characteristics in 
the case of the recurrent design event has not been developed so far. For this 
purpose, results of about 700 simulations of torrential rain in the Eastern Alps were 
compiled and interpreted in a joint effort by the Bavarian Environmental Agency 
(Germany) and the Institute of Natural Hazards and Alpine Timberline at the BFW in 
Innsbruck (Austria). The results were published as “a simple code of practice for 
assessing of surface runoff coefficients for alpine soil/vegetation units in torrential 
rain” by Markart et al. (2004). Further methods to estimate the surface runoff on the 
base of available data has been developed (Klebinder et al. 2008).  

 

5.4.2. Estimation of the Runoff Process 

The methods used in the field investigations are described in detail by Markart et al. 
(2006). For the characterization and differentiation of the various runoff producing 
areas in about 25 catchments and regions of the Eastern Alps, research plots were 
selected for the runoff characteristics of the different soil/vegetation complexes. 
These are irrigated by means of a transportable spray irrigation installation for large 
plots. Further investigations comprised monitoring soil water status using TDR-
probes, detailed characterization of vegetation (description of abundance, 
dominance and frequency on all plots, as well as analysis of plant biomass on 
several grassy plots) and analysis of the most important physical soil properties. 
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Tab. 5.4.2-1 Classification scheme of surface runoff 

 

A lot of simulations of torrential rain using transportable spray irrigation installations 
have been made. These data were extrapolated from plot size to representative 
hydrological soil/vegetation units, while considering hydrological effects of vegetation 
cover, physical soil characteristics as well as type and intensity of cultivation, e.g. the 
intensity of man-made, mechanical impact (roads, ski tracks, water logging) or 
grazing (mechanical impact by livestock). 

The surface runoff coefficient (Ψconst) describes the measured outflow in % of 
precipitation at the time of constant discharge. For the attribution of surface runoff 
coefficients, the schemes in (Tab. 5.4.2-1) are suggested. The value of Ψconst is 
allocated to the seven surface runoff classes (AKL). The colours following the system 
of a traffic light: Dark green indicates high infiltration potential and very low surface 
runoff, red = danger – high surface runoff potential, blue = sealed or totally wet 
areas. 

 

5.4.3. Processing Levels and Scales 

Runoff maps can be generated on various processing levels which follow different 
information values of the resulting maps. While the field investigated runoff maps 
represent accurate datasets with low uncertainty, runoff maps generated by the use 
and evaluation of existing information produce datasets with a higher uncertainty. 
However, processing time and costs of the latter are significantly lower. Thus, runoff 
maps based on area-wide field investigations are limited to micro- and meso-scale 
catchments. 

 

5.4.4. Indicators for Runoff Disposition 

  5.4.4.1 Infiltration Potential of Soils 

Infiltration of precipitation into the soil is primarily dependent on the proportion of 
makropores (Burch et al. 1989): The depth of penetration is influenced to a high 
extent by soil structure (depending on whether the soil is loose, dense or cohesive, 
Czell 1972). 
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Fig. 5.4.4.1-1: Rough classification of infiltration potential of soils depending on soil physical properties 

after Markart et al. (2004) 

 

Therefore, these soil features can be used as indicators for infiltration and runoff 
behavior (‘Fig. 5.4.4.1-1): 

• Contents of fine or coarse soil: The higher the amount of parts > 2 mm 
diameter, the higher the infiltration of water into the soil. The higher the 
contents of fine fraction, especially silt (0,063 mm to 0,002 mm ∅) and clay (< 
0,002 mm ∅), the slower percolation into the soil matrix. 

• Soil structure and layering: Loosely layered soils allow rapid infiltration of 
water into the soil. Content of draining pores - allowing rapid drainage and 
infiltration - decreases with increasing bulk density of soil.  

• Soil depth: Especially on shallow and very shallow soils on steep slopes and 
over near surface bedrock seepage is limited. After flowing short distances 
along the bedrock, water comes back to the surface as return flow. 

 

5.4.4.2 Surface Runoff at Different Land Cover Units and Indicator Function 

of Plants 

Plants are important indicators for hydrological site characteristics. Besides indicating 
nutrition or compaction, they characterize the predominant humidity conditions of a 
site (Schauer 1992). Based on statistical analysis and empirical interpretation of rain 
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simulation experiments, it became possible to compile a catalogue of plants 
indicating predominant runoff behavior of forests, wet areas, grazed areas and sites 
with good infiltration characteristics in general (Markart et al. 2004). 

Fig. 5.4.4.2-1 shows the surface runoff potential of major land cover units in Austria 
and can be summarized as follows: 

• Sites covered by forests dominantly show low to medium runoff values. 

• Grassland covers the whole range of runoff classes. However, there are clear 
tendencies by integrating soil and landuse indicators. 

• Cropland covers medium and high runoff classes. 

• Medium runoff potential e.g. is shown by mustard or rape. 

• High runoff values are achieved by plots covered with maize (AKL 5). 

• Bare soil before growth and after harvest shows AKL 5. 

• Very high runoff potential is expected on sealed areas, AKL 5/6. Runoff is 
developing very fast on such areas. 

 

Fig. 5.4.4.2-1: Dominant surface runoff classes for typical land cover units in Austria 

 

5.4.4.3 Effects of Cultivation and Mechanical Impacts on Surface Runoff 

Development 

Tab. 5.4.4.3-1 comprises examples covering the effect of different ways and 
intensities of cultivation and land use on infiltration characteristics depending on soil 
physical properties (content of fine soil / coarse material and layering / bulk density). 
The information is based on statistical and empirical analyses of results from 
simulations of torrential rain on about 700 plots in Middle-Europe.  
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Tab. 5.4.4.3-1: Effects of cultivation and mechanical impacts on surface runoff development (from 

Markart et al. 2004) 

 

 

 

 

 

 

5.4.5. Creation of Runoff Disposition Maps 

With these indicators, a realistic differentiation of different runoff contributing soil - 
vegetation complexes will be possible. It is feasible to allocate all indicators during 
field investigations (level high). A few parameters can be identified from the existing 
datasets to get the level “low”. Especially information from high-quality soil maps (like 
e.g. the ebod) can advance these runoff maps. 
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Tab. 5.4.5-1: Summary of indicators to estimate the surface runoff class 

AKL Gassland and pasture 

0 
Grassland; coarse soil, loose material and rich in skeleton with marginal mechanical 
impact 

1 Grassland; fine grained and loose soil without additional use 

2 
Grassland; fine grained and loose soil with additional use in low intensity (short-term 
pasture, impacts from light-weight machines) 

3 

Grassland and pasture; still loose soil with additional use (grazing, mechanical impacts 
e.g. driving of machines) or signs of pseudogley and/or soils with high moisture (fewer 
wetness indicators) 

4 Grassland; fine grained and cohesive soil (pseudogley, loam) 

4/5 

Grassland and pasture; fine grained and dense soil; intensively used areas with 
intensive pasture, driving with heavy machines; ski-runs with or without man-made 
changes in surface-morphology 

5 Grassland and pasture; saturated soils, extremely dense soils 

6 Wet areas with permanently saturated soil (e.g. fen, spring-areas) 

 Cropland 

3 Loose and fine-grained substrate with dense plant cover 

4 
Fine-grained – cohesive soil-substrate with dense plant cover; 

maize on sandy and loose soil 

5 
Plants without a complete surface coverage; fine grained and cohesive soils; 

maize  

 Forests 

0 Soil rich in boulders and skeleton, loose soils 

1 Fine-grained and loose soils covered by forests with dense ground vegetation 

2 
Fine-grained and loose soils; spruce without ground vegetation; no additional use e.g. 
grazing or driving with heavy machines 

3 

Fine-grained and cohesive soil-substrate (pseudogley, loam); forests with dense ground 
vegetation; 

Spruce without or with poor ground covering vegetation on fine-grained soils 

4 
Fine-grained cohesive and/or dense soils (e.g. dense pseudogleys); forests with poor 
ground vegetation  
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5.4.6. From Surface Flow to Subsurface Flow 

While the surface runoff process is strongly connected to the type and state of the 
vegetation cover as well as the current and former landuse types, the subsurface 
flow is dominated by the soil characteristics (e.g. hydrological productivity, storage 
capacity and degree of soil saturation). 

Interflow near the surface which can be a major factor in the release process of 
shallow landslides, affects both soil and vegetation. Especially the existence of 
preferential flow paths (macropores, mouse tubes, root tubes, etc.) has an impact on 
the development of this part of the general runoff process. 

To assess the water which can infiltrate the soil (subsurface flow SSF), the surface 
runoff coefficient Ψconst was subtracted from the value 1 (1 is equivalent to the 
infiltration of the entire precipitation). 

SSF = 1 - Ψconst 

To calculate the subsurface flow, the mean value of each Surface Runoff Class 
(AKL) was determined. The result of this calculation was used to define the weight - 
factor for the computation of the accumulated subsurface flow conducted in the 
SAGA GIS environment. SAGA offers a flow tracing module which allows to use the 
DEMON routing algorithm (Costa-Cabral and Burges, 1994). 

 

Available Datasets  

Different datasets are available to create the runoff disposition maps for the low and 
medium process level. 

Soil information or information about the unconsolidated rock 

1) The conceptual map of unconsolidated rock in the high process level (GBA) 

2) The soil map, compiled from the digital soil map (eBod) and the Forest Site 
Map (BFW) 

 

Information about landcover and landuse 

The database from the digital cadastral map (DKM) was used. The map presents a 
high resolution and informative database for settlement and agriculture used areas, 
the content for forests are slight. 

Information about topography-related issues 

To generate hydrological essential databases, the digital elevation model (DEM) with 
10 meter resolution was used. The DEM was used for deriving: 

1) A map of incoming solar radiation which describes the potential soil moisture, 
calculated in SAGA GIS by using standard parameter settings. 

2) A map of flow accumulation which describes the potential saturation of soils.  
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5.4.7. Assessment of the Runoff Disposition Map „Low Level“ 

The assessment of the runoff disposition on this level generally uses available 
datasets, which are upgraded by the expertise of the scientist. They are generated 
with moderate processing effort without fieldwork and specify knowledge on local 
conditions or facts. The currently existing knowledge about runoff generation process 
is used, as far as possible; an adaption of this knowledge to special issues of the 
investigation area is practicable. 

Mostly geographic information systems (GIS) are used to generate additional 
necessary information (e.g. topographic wetness index calculated from the DEM). 
The GIS allows to develop an estimation scheme and to produce maps. 

Assessing the runoff disposition for the low processing level, the landuse dataset 
was combined with the conceptual map of unconsolidated rock in the high process 
level. Each soil-landuse combination was defined by a runoff disposition class (AKL, 
Tab. 5.4.7-1). 

 

Tab. 5.4.7-1: Surface runoff classes (AKL, estimation matrix using soil information and landuse) 

 

 

To include the topographical parameters which are derived from the DEM, the defined AKL-
values were modified to higher or lower AKLs. 

 

Tab. 5.4.7.-2: Modification of surface runoff classes using topographic parameters 
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Tab. 5.4.7-2 shows the modification matrix, where high radiation in combination with 
a low flow accumulation follows through a lower surface runoff. The range of 
modification accounts for +/- two AKLs, the modification is limited to the minimum 
and maximum values for each landuse class. The “low level” subsurface flow map is 
shown in Fig. 5.4.7-1. 

 

Fig. 5.4.7-1: Subsurface flow (in percent of the precipitation), processing level low 

 

5.4.8. Assessment of the Runoff Disposition Map „Medium Level“ 

Generally, the assessment of the runoff disposition on a medium level is based on 
further specified datasets, which are generally not available. On this level, a portion 
of the project time will be devoted to the investigation area, in order to get extended 
knowledge about the environment, selective analysis of the bio- pedo- and 
hydroinventory and to upgrade basic information datasets. The estimation schemes 
and the production of the runoff maps will be conducted using a GIS. 
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The procedure to generate the map is modified to the procedure described in the low 
level method: 

• Instead of the conceptual map of unconsolidated rock (GBA) the soil map 
(BFW) was used. 

• To simplify the procedure and to uniform the way of map creation, the pedo-
physical parameters from the soil map were transformed (Tab. 5.4.8-1) to the 
soil classification system from the map of the conceptual map of 
unconsolidated rock, thereby using the estimation scheme (Tab. 5.4.7-1) from 
the low level procedure. 

 

Tab. 5.4.8-1: Transfer from the soil map units(BFW) to the units of the conceptual soil map (GBA) 

 

 

• Including the soil saturation in the assessment, the parameters were 
interpreted in reference to the soil moisture described in the soil map (BFW) 
(Tab. 5.4.7-2). The modification account for +/- one AKL and is limited to the 
minimum and maximum value of each landuse class. 

 

Tab. 5.4.8-2: Modification of surface runoff class (AKL) using soil moisture information from soil map 

 

 

The “medium level” subsurface flow map is shown in Fig. 5.4.8-1 
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Fig. 5.4.8-1: Subsurface flow (in percent of the precipitation), processing level medium 

 

5.4.9. Assessment of the Runoff Disposition Map „High Level“ 

The assessment of the runoff disposition occurs by area-wide fieldwork. All indicators 
for runoff mapping were investigated and integrated to estimate the corresponding 
runoff class. For this purpose, the decision scheme from Markart et al. (2004) was 
used. Fig. 5.4.9-1 shows the “high level” subsurface flow map. 
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Fig. 5.4.9-1: Subsurface flow (in percent of the precipitation), processing level high 
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5.5.  Precipitation Maps (ZAMG) 

5.5.1. Introduction 

On 20th and 21st August 2005, a torrential rain event caused widespread flooding 
and landslides in the area of Gasen/Haslau in Eastern Styria (Andrecs et al. 2007). 
In the context of the “ADAPTSLIDE” project, the Central Institute of Meteorology and 
Geodynamics (“Zentralanstalt für Meteorologie und Geodynamik”, ZAMG) was asked 
to conduct a recalculation of precipition analyses of this event, including a spatially 
differentiated estimation of uncertainties. 

 

5.5.2. Data Base 

The operational precipitation analyses of the INCA system are based on a non-linear 
combination of radar and rain gauge data (Haiden et al. 2009) in order to combine 
the advantages of both methods, namely the accuracy of rain gauge measurements 
and the high spatial resolution of radar data. The latter are available on a 1*1-
kilometre grid, which is also used for the whole INCA system. Concerning the rain 
gauges, for the area of Styria so far only automatic stations of ZAMG have been 
used. For the present project, 24-hourly measurements of 7 additional stations of the 
Hydrological Service (“Hydrografisches Zentralbüro”, HZB) in the area of Gasen were 
available. 

These additional stations may prove valuable in further resolving the spatial structure 
of the precipitation fields, since the typical distance between two neighbouring ZAMG 
stations is in the order of 10 to 20 kilometres, and Fischbach is the only ZAMG 
station inside the area of investigation. A comparison between operational INCA 
precipitation analyses and reanalyses including the 24-hourly HZB stations that has 
been conducted earlier, has shown the interesting result that two HZB gauges, 
namely Fladnitzberg and Hohenau, had received considerably more precipitation on 
20th August than the operational analyses had displayed (Haiden 2008). 

 

5.5.3. Methodology 

In order to quantify the uncertainties, “ensemble analyses” were computed by 
artificially omitting the data of one of the rain gauges in the investigation area, 
following the idea of cross validation. Thus, this method yields 8 different analyses, 
plus the operational analysis (without the HZB data) and the reanalysis (including the 
HZB data). 

Furthermore it was investigated if the spread of these ensemble analyses (i.e. the 
uncertainty) could further be reduced by a modification of the radar data scaling, in 
particular concerning the extent to which radar data are “allowed” to be scaled 
upward by corresponding rain gauge measurements. In the operational INCA 
system, the maximum threshold of this upward scaling is set rather conservatively, 
since this has proven to show on average the best results (Haiden et al. 2009). If the 
radar data strongly deviate from the rain gauge measurements, however, like on 
20th August in Fladnitzberg and Hohenau, a more flexible scaling with a higher 
threshold may create better analyses. 
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5.5.4. Results 

  5.5.4.1 Comparison of Operatinal INCA Analyses and HZB Rain Gauge 

Measurements 

Tab. 5.5.4.1-1: HZB rain gauge measurements (left column) and precipitation operationally analysed in 

INCA at their corresponding grid points (right column) on 20th (top), 21st (center) and 22nd August 

(bottom) 

HZB station number name measurement 

[mm/24h]

INCA analysis 

[mm/24h]

111328 Kreuzwirt 13,8 7,8

111369 Hohenau/Raab 134,5 66,5

111401 Fladnitzberg 99,9 55,5

111435 Alpl 43,2 15,8

112003 Breitenau/Mixnitz 57,9 46,1

112540 Stanz 40,1 45,8

123117 Birkfeld 52,0 39,2

HZB station number Name measurement 

[mm/24h]

INCA analysis 

[mm/24h]

111328 Kreuzwirt 34,7 41,6

111369 Hohenau/Raab 56,4 62,5

111401 Fladnitzberg 69,4 68,2

111435 Alpl 66,4 59,4

112003 Breitenau/Mixnitz 55,6 58,8

112540 Stanz 66,7 60,3

123117 Birkfeld 55,0 45,7

HZB station number Name measurement 

[mm/24h]

INCA analysis 

[mm/24h]

111328 Kreuzwirt 2,6 2,4

111369 Hohenau/Raab 5,7 6,1

111401 Fladnitzberg 9,0 9,1

111435 Alpl 3,3 4,1

112003 Breitenau/Mixnitz 7,8 11,3

112540 Stanz 4,4 8,0

123117 Birkfeld 10,6 3,5  

 

Tab. 5.5.4.1-1 opposes the measurements of the HZB rain gauges to the operational 
INCA precipitation analyses at the corresponding grid points. On 20th August, the 
precipitation was underestimated by a factor of 2 at the stations of Hohenau and 
Fladnitzberg that were especially affected by the strong precipitation event, and even 
by a factor of 3 at the station of Alpl (though with lower absolute amounts). The 
analyses show a better quality on 21st and 22nd August. Absolute precipitation 



AdaptSlide 83 

 

amounts on 21st are of a similar magnitude as on 20th, whereas precipitation was 
less plentiful on 22nd August. 

 

  5.5.4.2 Computation of Ensemble Precipitation Analyses by Omitting one 

Station in Each Case 

In the following, ensemble precipitation analyses for 20th (Fig. 5.5.4.2-1), 21st (Fig. 
5.5.4.2-2) and 22nd August 2005 (Fig. 5.5.4.2-3) are depicted. Each of these figures 
contains in this order the operational precipitation analysis and the precipitation 
reanalysis (large pictures), the 8 ensemble analyses in a narrower sense (panel of 
small pictures), and finally the absolute and relative ensemble spread (large pictures 
again), respectively. The absolute ensemble spread is computed by subtracting the 
lowest precipitation analysis from the highest one, and the relative ensemble spread 
by dividing these values by the precipitation reanalysis (i.e. including the 24-hourly 
HZB data), which for comprehensible reasons may be regarded as the best one 
available. 

Each INCA precipitation analysis is composed of an analysis obtained by station 
interpolation and a radar analysis, which are combined in such a way that on the one 
hand station measurements are reproduced at their according grid points, and on the 
other hand the structures obtained from the radar field are reproduced in-between. 
The station interpolation follows an inverse distance weighting algorithm in 
consideration of an elevation dependency of precipitation (Haiden and Pistotnik, 
2009). It can be seen in the pictures that the introduced uncertainties also radiate 
into the surroundings of the investigation area, exhibiting still moderate effects in a 
distance of about 50 kilometres; this range is governed by the choice of using the 8 
nearest stations, respectively, for the inverse distance weighting. 

Due to the discrepancy between radar and station measurements on 20th August, 
there is a considerable uncertainty margin on that day, peaking around 60 mm in the 
vicinity of Fladnitzberg and Hohenau (Fig. 5.5.4.2-1c, top). It is noteworthy that the 
maximum of the relative uncertainty is displaced further to the Northeast, where it 
locally reaches more than 200% of the reference value close to Fischbach (Fig. 
5.5.4.2-1c, bottom). This is attributable to the fact that the extreme peak of 
precipitation at Fladnitzberg and Hohenau is still represented by the respective other 
station if one of them is omitted, whereas further Northeast the Fischbach 
measurement yields a local precipitation minimum which is filled by the higher values 
of the surrounding HZB stations upon leaving out this value. 

There are smaller uncertainties on 21st August, when their absolute as well as 
relative maxima are situated between Kreuzwirt and Birkfeld and amount to 20 to 25 
mm, or approximately 60% of the reference value, respectively (Fig. 5.5.4.2-2c). 

Analysis uncertainties are even smaller, namely around 5 mm only, on 22nd August 
(Fig. 5.5.4.2-3c, top). The relative uncertainty shows similar values to the day before, 
but the low signal-to-noise ratio indicates that this calculation method reaches its 
limits if the precipitation amounts are as little as on this day (Fig. 5.5.4.2-3c, bottom.) 
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Fig. 5.5.4.2-1a: 24-hourly INCA precipitation analysis from 20th Aug. 2005 06 UTC to 21st Aug. 2005 

06 UTC without (top) and with HZB data (bottom). Circles denote ZAMG stations, triangles HZB 

stations 
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Fig. 5.5.4.2-1b: 24-hourly INCA ensemble precipitation analyses from 20th Aug. 2005 06 UTC to 21st 

Aug. 2005 06 UTC, created by omitting one station respectively (from top left line-by-line to bottom 

right: HZB stations Kreuzwirt, Hohenau/Raab, Fladnitzberg, Alpl, Breitenau/Mixnitz, Stanz and Birkfeld 

plus ZAMG station Fischbach) 
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Fig. 5.5.4.2-1c: Absolute (top, [mm/24h]) and relative spread (bottom, [%]) of the precipitation 

ensembles of 20th Aug. 2005 from Fig. 1a and 1b 
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Fig. 5.5.4.2- 2a: 24-hourly INCA precipitation analysis from 21st Aug. 2005 06 UTC to 22nd Aug. 2005 

06 UTC without (top) and with HZB data (bottom). Circles denote ZAMG stations, triangles HZB 

stations 
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Fig. 5.5.4.2-2b: 24-hourly INCA ensemble precipitation analyses from 21st Aug. 2005 06 UTC to 22nd 

Aug. 2005 06 UTC, created by omitting one station respectively (from top left line-by-line to bottom 

right: HZB stations Kreuzwirt, Hohenau/Raab, Fladnitzberg, Alpl, Breitenau/Mixnitz, Stanz and Birkfeld 

plus ZAMG station Fischbach)  
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Fig. 5.5.4.2-2c: absolute (top, [mm/24h]) and relative spread (bottom, [%]) of the precipitation 

ensembles of 21st August 2005 from Fig. 5.5.4.2-2a and 5.5.4.2-2b 
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Fig. 5.5.4.2-3a: 24-hourly INCA precipitation analysis from 22nd Aug. 2005 06 UTC to 23rd Aug. 2005 

06 UTC without (top) and with HZB data (bottom). Circles denote ZAMG stations, triangles HZB 

stations 
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Fig. 5.5.4.2- 3b: 24-hourly INCA ensemble precipitation analyses from 22nd Aug. 2005 06 UTC to 23rd 

Aug. 2005 06 UTC, created by omitting one station respectively (from top left line-by-line to bottom 

right: HZB stations Kreuzwirt, Hohenau/Raab, Fladnitzberg, Alpl, Breitenau/Mixnitz, Stanz and Birkfeld 

plus ZAMG station Fischbach) 
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Fig. 5.5.4.2-3c: absolute (top, [mm/24h]) and relative spread (bottom, [%]) of the precipitation 

ensembles of 22nd August 2005 from Fig. 5.5.4.2-3a and 5.5.4.2-3b 
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 5.5.4.3 Tests with a Modified Radar Scaling 

Differences between gauge and radar measurements of precipitation are ubiquitous. 
Its most important reasons are on the one hand the limitation of the radar sight due 
to earth curvature as well as mountains and other obstacles, and on the other hand 
the lack of knowledge about spatial variations of precipitation intensities, which may 
happen at very small scales and can therefore not sufficiently be resolved by radar, 
let alone station measurements. Neglecting the fact that also rain gauge 
measurements are subject to uncertainties (especially when influenced by wind), 
they can be considered to represent the “truth” which is only available at a few 
discrete points, whereas the radar measurements are continuously available but 
posing a less accurate estimation. 

It is a logical consequence to calibrate the radar analysis with the help of rain gauge 
measurements. This is also done in a double-stage process within the INCA system, 
first on a monthly basis according to climatological experience and subsequently 
according to rain gauge measurements. In certain circumstances, a calibration like 
this may be precarious, as an upward calibration of radar measurements may yield 
unrealistically high precipitation peaks, especially during situations with high 
precipitation intensities and high spatial variability, as it is characteristic for 
summertime convective precipitation events (i.e., showers and thunderstorms). 

As a consequence, the maximum “allowed” calibration factor is limited with the value 
of 4 in the operational INCA system, yielding on average the best results according 
to previous studies (Haiden et al. 2009). Any possible residual of the span between 
radar and station measurements is bridged not until in the following and final step, 
the combination between radar and station analysis; in doing so, the actual 
occurrence of a residual span is rated as a hint of a poor radar sight, and 
consequently the weight of the radar field is reduced and its structures are less 
accentuated. Poor radar sight mainly applies to the Alpine area, where the INCA 
precipitation analyses are thus usually characterized by the coarse structures from 
the station interpolation and not by the fine, but occasionally not trustworthy 
structures from the radar field. 

Translating this into the present investigation, it means that the extremely high 
precipitation measurements at Fladnitzberg and Hohenau on 20th August 2005 that 
were not in line with the radar data, produced a broad “blob” of precipitation which 
was actually unrealistic for this convective precipitation event. That is why it was 
investigated if a more flexible calibration of the radar field with higher limits would 
yield a better analysis with more realistic and more accentuated precipitation peaks. 
For this purpose, the maximum allowed calibration factor was set to 5 first and to 
unlimited afterwards. As it turned out that the needed calibration factors rarely rose 
above 5, these two test runs hardly differ, which is why only the results of the 
unlimited calibration are presented here. 
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Fig. 5.5.4.3-1a: 24-hourly experimental INCA precipitation analysis with modified radar calibration from 

20th Aug. 2005 06 UTC to 21st Aug. 2005 06 UTC without (top) and with HZB data (bottom). Circles 

denote ZAMG stations, triangles HZB stations 
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Fig. 5.5.4.3-1b: Absolute (top, [mm/24h]) and relative spread (bottom, [%]) of the experimental 

ensemble precipitation analyses from 20th Aug. 2005 06 UTC to 21st Aug. 2005 06 UTC 
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Fig. 5.5.4.3-2a: 24-hourly experimental INCA precipitation analysis with modified radar calibration from 

21st Aug. 2005 06 UTC to 22nd Aug. 2005 06 UTC without (top) and with HZB data (bottom). Circles 

denote ZAMG stations, triangles HZB stations 
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Fig. 5.5.4.3-2b: Absolute (top, [mm/24h]) and relative spread (bottom, [%]) of the experimental 

ensemble precipitation analyses from 21st Aug. 2005 06 UTC to 22nd Aug. 2005 06 UTC 
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Fig. 5.5.4.3-3a: 24-hourly experimental INCA precipitation analysis with modified radar calibration from 

22nd Aug. 2005 06 UTC to 23rd Aug. 2005 06 UTC without (top) and with HZB data (bottom). Circles 

denote ZAMG stations, triangles HZB stations 
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Fig. 5.5.4.3-3b: Absolute (top, [mm/24h]) and relative spread (bottom, [%]) of the experimental 

ensemble precipitation analyses from 22nd Aug. 2005 06 UTC to 23rd Aug. 2005 06 UTC 
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The question whether the ensemble of experimental analysis was indeed better than 
the ensemble of the operational analysis was addressed in two ways: 

• Is the uncertainty margin of the experimental ensemble analyses smaller than 
in the reference? 

• Can the measurements of the HZB stations be better reproduced than in the 
operational reference? 

Fig.s 5.5.4.3-1 to 5.5.4.3-3 show the analyses without HZB data, the analyses with 
HZB data (it was abandoned to present the remaining 8 ensemble analyses this 
time) and the absolute and relative spread of the 10 ensemble analysis, as before 
but with the modified radar calibration. 

The reduction of the uncertainty margin is obvious on 20th August (Fig. 5.5.4.3-2a) 
and on 21st August (Fig. 5.5.4.3-2b; compare with Fig. 5.5.4.2-1c and 5.5.4.3-2c, 
respectively). On 22nd August hardly any differences are visible any more, which is 
mainly due to the less plentiful precipitation amounts on that day. Computing the 
mean ensemble span over a square of 100x100 kilometres centered on Gasen 
confirms the reduction of the span on 20th and 21st August as well as a marginal 
rise on 22nd August (Tab. 5.5.4.3-1). 

 

Tab. 5.5.4.3-1: Comparison of the mean span of ensemble precipitation analyses with operational (left 

column) and experimental radar calibration (right column) in an area of 100x100 kilometres around 

Gasen 

Date mean span of reference ensembles 

[mm/24h]

mean span of experimental ensembles 

[mm/24h]

20
th

 Aug. 2005 4,34 3,72

21
st

 Aug. 2005 1,58 1,21

22
nd

 Aug. 2005 0,30 0,32
 

 

To answer the question if the reduced ensemble span in fact encompasses the 
“truth” and not another value, it was additionally investigated by means of cross 
validation if the measurements of the HZB stations can be better reproduced by the 
INCA analyses with modified radar calibration than by the operational INCA analysis 
(Tab. 5.5.4.3-2). Results are inconclusive here: The rain gauge measurements on 
20th August (especially the extreme peaks at Hohenau and Fladnitzberg) are 
captured considerably better on 20th August (especially the extreme peaks at 
Hohenau and Fladnitzberg) but predominantly poorer on 21st August. The root mean 
square error (RMSE) from the 7 HZB stations drops from 33.2 mm to 27.9 mm on 
20th August while it rose from 6.2 mm to 7.7 mm on 21st August. On 22nd August, 
the analysed values according to both methods are almost identical, pointing out that 
the discrepancies between radar and rain gauge measurements are only small on 
that day. 



AdaptSlide 101 

 

Tab. 5.5.4.3-2: Comparison of INCA precipitation analyses with operational radar calibration (left 

column) and INCA precipitation analyses with experimentally modified radar calibration (central 

column), each of them without using HZB data, with the HZB rain gauge measurements tehmselves 

(right column) on 20th (top), 21st (center) and 22nd August (bottom) 

HZB station name operational 

INCA analysis 

exp. INCA 

analysis 

measurement 

[mm/24h]

111328 Kreuzwirt 7,8 7,8 13,8

111369 Hohenau/R. 66,5 78,6 134,5

111401 Fladnitzberg 55,5 63,7 99,9

111435 Alpl 15,8 15,9 43,2

112003 Breitenau/M. 46,1 49,7 57,9

112540 Stanz 45,8 47,0 40,1

123117 Birkfeld 39,2 40,7 52,0  

HZB station name operational 

INCA analysis 

exp. INCA 

analysis 

measurement 

[mm/24h]

111328 Kreuzwirt 41,6 41,1 34,7

111369 Hohenau/R. 62,5 67,3 56,4

111401 Fladnitzberg 68,2 77,1 69,4

111435 Alpl 59,4 61,2 66,4

112003 Breitenau/M. 58,8 62,2 55,6

112540 Stanz 60,3 64,5 66,7

123117 Birkfeld 45,7 44,2 55,0  

HZB station name operational 

INCA analysis 

exp. INCA 

analysis 

measurement 

[mm/24h]

111328 Kreuzwirt 2,4 2,4 2,6

111369 Hohenau/R. 6,1 6,1 5,7

111401 Fladnitzberg 9,1 9,1 9,0

111435 Alpl 4,1 4,1 3,3

112003 Breitenau/M. 11,3 11,3 7,8

112540 Stanz 8,0 8,0 4,4

123117 Birkfeld 3,5 3,6 10,6  

 

5.5.5. Summary and Interpretation 

A re-computation of INCA precipitation analyses shows the strong influence, which 
may unfold by the use of additional HZB stations with 24-hourly data that are not 
available in real-time. The creation of ensemble analyses by omitting single stations 
in the investigation area was used to quantify the uncertainties, which grow bigger 
when the precipitation gradients are stronger and additional measurements thus 
become more important. Hence especially the extremely high readings of two HZB 
stations (Fladnitzberg and Hohenau) and the comparably low value of ZAMG station 
Fischbach are reflected in a considerable uncertainty margin on 20th August, 
whereas the sharpness of analysis increased on 21st and 22nd August. 
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Tests with a modified radar calibration showed that a more flexible calibration would 
significantly improve the results on 20th August, whereas it would impair analysis 
quality on 21st August. These findings are conflicting with an earlier, more extensive 
investigation, according to which the maximum threshold of the calibration factor was 
set to the operational value of 4. Thus, the tests and experiences with the radar 
calibration suggest that the operationally used one yields the best results on 
average, but may be suboptimal in some extreme cases; this leads to the recurrent 
and not universally solvable problem if the best results on average or the most 
realistic representations of extreme events are desired. 

Finally, also the question which meteorological reasons caused the radar and rain 
gauge measurements to differ that strongly on 20th August 2005 is interesting. The 
weather situation on that day was characterized by a low pressure system that 
moved from France via Northern Italy to the Balkan states. Ahead of it, especially on 
20th August a very warm and unstably stratified air mass was transported to Austria 
from the Southeast. As the water surface temperature of the Adriatic Sea usually has 
its annual maximum at this time and a correspondingly high amount of water 
evaporates, the content of water vapour was very high in this air mass, and so was 
its potential to produce strong precipitation events which was indeed released as it 
reached the Alpine range and was forced to rise. 

Due to the high content of water vapour, the cloud base was unseasonably low (for 
example, the weather observers on duty at Graz Thalerhof airfield reported a cloud 
base about 300 metres above ground, or about 700 metres above sea level only). 
This means that a considerable amount of droplet growth, and thus enhancement of 
precipitation still occurred in very low levels, which can hardly be scanned by radar, 
since its nearest location is situated on Zirbitzkogel at 2300 metres above sea level. 
As long as the rain gauge measurements are representative for their respective 
environment, the radar calibration and the final combination of the radar analysis with 
the interpolated “station analysis” are capable of correcting these errors. In the case 
presented here, however, embedded convection was responsible for very localized 
and extreme precipitation peaks, which did not hit any of the operationally available 
stations.  

Summing up, an unfortunate coincidence of a “winterly” low cloud base (with its 
implications in the precipitation characteristics and the radar sight) and a “summerly” 
high variability and intensity of this precipitation event, whose peaks could not be 
represented by any of the operationally available stations, seems to have caused the 
poor quality and the high uncertainty of the INCA precipitation analyses on 20th 
August 2005. The weather phenomenon which caused it, namely a low pressure 
system moving along a path protruding deeply South into the Mediterranean region 
and thus being able to ingest very warm and humid air masses, is very rare in 
summer, in fact it does not occur at all in many years; hence a situation like this and 
its impact on the performance of precipitation analyses is not expected to occur 
often. On the other hand, if this weather pattern happens to occur again in summer, 
it can initiate a precipitation event with similar characteristics anytime again. 
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6. Datamanagement (GBA, JR) 

6.1. Process Data 

6.1.1. Extracting Data Batches of Varying Quality 

The process data (Fig. 6.1.1-1, 1008 points), which are available for modelling 
process-oriented susceptibility maps, are very heterogeneous in terms of data quality 
and the content due to different data sources (archive, remote sensing, field 
observation), exploration methods, and investigation aims (eg. process- and 
damage-oriented cadaster/inventories). It is therefore necessary to divide this data 
into data batches with different relevance for different modelling objectives, and 
different data quality (content, location, etc.). In doing so, the following factors must 
be taken into account: Which data is reliable/unreliable information due to: 

a. geographical localization 

b. general process information (gravitational mass movements) 

c. process type (spontaneous gravitational mass movements in soil)  

d. process-triggering factors 

e. the event date 

f. the attribution of real, location-specific characteristics/features/conditions  

 

 

Fig. 6.1.1-1: Geographical positions of the process data (1008 point-information) available for 

modelling susceptibility maps for the Region of “Gasen-Haslau” 
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In order to ensure a clear, transparent extraction of the data into batches of different 
data-quality, a hierarchical extraction method was developed and applied (Fig. 6.1.1-
2). The following criteria were employed for the gradual (step by step) extraction of 
data batches of different quality and application-objectives:  

1. As a first step, all process information points (11 points) were removed that 
were unsuitable for detailed or large-scale modelling due to uncertain or 
deficient geographical location. The data extracted cannot be used for further 
modelling and validation of susceptibility maps. 

2. Then all process information points were removed for which it was unclear 
whether they actually supplied any information on a gravitational mass 
movement (217 points). This means that all those points have been removed 
that were based on uncertain indications, obtained from the use of indirect 
investigation methods (such as aerial photo analysis). These points were 
assessed as ‘conjectural’ or ‘indicative.’ Depending on the potential event 
date/period, the data batch was then decomposed in turn into model-external 
test data (103 points) and time-related test data (114 points) of poor quality (5 
points: definitely not a mass movement). 

3. After that, all data points were removed that did not relate to mass movements 
in soil (107), or for which it was unclear whether they related to mass 
movements (3 points). This, for example, involved information on 
progressively, not spontaneous mass movements (for example creeping 
slopes) or rock slides. Similarly, points were removed, for which the type of 
mass-movement could not be sufficiently defined (attribution: ‘non-specific 
mass movement’). Depending on the potential event date/period, this data 
batch was also decomposed into test data (39 points) and time-related test 
data (68 points) of medium quality. 

4. As a further step, all data points were removed that contained reliable or 
unreliable information on the process-triggering factor ‘fluvial bank erosion’ 
(181 points). This is very important, because for process-oriented 
identification of areas of different/comparable process susceptibility, only 
those process information should be included in the modelling, for which 
comparable, dominant, process-controlling variables and location 
parameters/conditions can be adopted. Thus, a susceptibility map for mass 
movements, which are induced by hydrological, fluvial processes, would 
require parameter maps that could approximately represent the hydrological 
and hydraulic conditions along/in the brooks and rivers. For this reason, the 
project ADAPTSLIDE also concentrates on the susceptibilities of those 
processes that were/are triggered in the slope areas solely due to 
hydro(geo)logical slope processes.  
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Fig. 6.1.1-2: Schematic representation of the hierarchical method of extracting data sets (i) for different objectives, (ii) different relative quality and (iii) data with 

project-related relevance 
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5. After that, all data points were removed that provided information about 
process events from other event periods than August 2005 (34 points: time-
related test data with high quality). It is particularly important to take this into 
account when event-specific parameter maps (for example precipitation 
maps) are used to model the process susceptibility. On the one hand, the 
intention can be to produce event-specific susceptibility maps and in that way 
to check the functionality of a model. On the other hand, for general land-use 
planning, it is important to have more general susceptibility maps that are not 
limited to specific events. 

6. Furthermore, all those data points were extracted that had incomplete 
attribution of important location-specific parameters/factors (16 points). This is 
particularly important when model calculations are supposed to be done using 
training data whose parameter attributions are based on field observation (i.e. 
are more likely to be real, location-specific parameters). By including all other 
data points with incomplete attribution, only model training with the available 
parameter maps, which are based on generally available data, is possible. 
This means that the quality and the functionality of a model-technique is 
distorted and can therefore only be analyzed badly (i.e. what is rather 
recognized by the model, and what rather not). So it can happen, for example, 
that on the basis of a model technique correct relationships are quite well 
recognized, but the regionalisation of these relationships fails due to poor 
quality of the available regionalization data. Data with incomplete parameter 
attribution is therefore classified as test data with high data quality. 

7. The aim of the ADAPTSLIDE project is to produce susceptibility maps for 
spontaneous mass movements in soil for the districts of Gasen and Haslau 
(Fig. 6.1.1-3, red lines). Because the process data obtained extends into other 
district areas as well (Fig. 6.1.1-3), the modelled area is smaller than the area 
investigated. Consequently, process data that has no relevance for the 
districts of Gasen and Haslau (21 points) should be extracted from the data 
set that is relevant for modelling. However, in so doing, it must be kept in mind 
that the process areas of mass movements that induced outside district 
boundaries might well extend into areas of these districts. Thus, all data points 
situated outside district boundaries, but whose scar areas are located upslope 
from district boundaries, were not removed from the data sets that are 
relevant for modelling. In the same way the delineation of the modelling area 
for susceptibility maps was drawn, so that all those slope areas were included 
into the modelling, whose potential process areas extend into the municipal 
area (Fig. 6.1.1-3 and 6.1.1-4, yellow area).  
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1)  

Fig. 6.1.1-3: Modelling-relevant area for the districts of Gasen and Haslau, including project-relevant 

points (red) and non project-relevant points (pink) 

 

Based on the aim of the project, the high-quality process data set available for 
modelling process susceptibility is reduced to 413 points (Tab. 6.1.1-1). Similarly, all 
other test and prediction data of different quality that have been of significance for 
the modelling in the project area, were ultimately extracted (Fig. 6.1.1-4, Tab. 6.1.1-
1). 

 

Fig. 6.1.1-4: Available data of very high relative quality (training, test, and validation data) and 

additional test data and prediction data of different relative quality (legend, Tab. 6.1.1-1) used for 

modelling susceptibility to spontaneous mass movements in soil in the project area Gasen-Haslau 

(yellow area)  
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Tab. 6.1.1-1: Process data sets, which were extracted for the model area, and which are characterized 

by different quality 

Data Set Number of points Legend, map in Fig. 6.1.1-4 

   Final process data set for modelling 413 dark red 

Test data (high quality) 12 dark green 

Test data (medium quality) 39 green 

Test data (low quality) 92 light green 

Time-related test data (high quality) 34 dark blue 

Time-related test data (medium quality) 57 blue 

Time-related test data (low quality) 112 light blue 

 

6.1.2. Splitting of Process Data of High Quality (Training-, 
Validation-, Testdata) 

Data splitting is the act of partitioning available data into two (or more) portions; 
usually for validatory purposes. Generally one portion of the data is used to develop 
a predictive model and the other one to evaluate the model’s performance (Picard & 
Berk 1990). In the case of Artificial Neural Network (ANN) development to ensure 
generalization three representative parts have to be created: training-, validation- and 
testdata (cf. section 7.2). The sampling methodology used for data splitting can have 
a significant effect on the quality of the subsets used for training, testing and 
validating an ANN. Poor data splitting can result in inaccurate and highly variable 
model performance (May et al. 2010). 

The dataset “high quality for modelling”, (Tab. 6.1.1-1) hence was divided into three 
representative portions: training-data (40 %), validation-data (30 %) and test-data 
(30 %). Each element (or pixel) is randomly assigned to one of the three portions 
bearing in mind that data are characterized by inhomogeneity with regard to defined 
parameters. Each element is characterized by a number of properties with these 
properties irregular distributed over the study area. A simple random sampling would 
lead to portions which are not representative anymore. So the partition of the data is 
performed by stratified random sampling without replacement. For the sampling the 
following stratification was used (abbreviations see Tab. 6.2-1):  

� Curvature Classification based on DTM 10m (“HK-DHM10”, 9 categories) 

� Exposition (8 categories) 

� Influence area of Road Network „level low“ based on Digital Cadastral Map 
(DCM) and field mapping (“Wegenetz_lg_mb”, 2 categories) 

� Forest „level low“ based on DCM and field mapping (“Wald_DKM_lg_mb”, 
2 categories) 

� Geological basic disposition „level low“ based on conceptual soil map “level 
low” (“Sub_GK_lg”, 5 categories)  

� Precipitation “level low” (“NS_lg”, 4 categories) 

This selection results in 5760 strata, but not all of these strata are available in the 
underlying data. Furthermore, the landslide pixels of the trainings and validation data 
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are duplicated to achieve approximately the same proportion of elements with and 
without landslides.  

The results of the data splitting are given in Tab. 6.1.2-1. Distribution of landslide 
training- validation and testdata is illustrated in Fig. 6.1.2-1. 

 

Tab. 6.1.2-1: Results of splitting of process data of high quality (training-, validation-, testdata) 

Data Set 
pixels without landslides landslides 

number % number % 

Training data 8033 40,07 171 41,40 

Validation data 6020 30,03 126 30,51 

Test data 5995 29,90 116 28,09 

Σ 20048 100 413 100 

 

 

Fig. 6.1.2-4: Distribution of training-, validation- and testdata of landslide points after data splitting in 

the study area 

 

Apart from the training-, validation- and testdataset, a fourth dataset, called 
“regionalisation dataset” was created. This dataset was generated without 
considering the landuse information mapped at the locations of the process data. 
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Only information which was derivable from maps like the DCM or satellite images 
was used. The dataset covers the whole study area by a 50 m raster and shows only 
one value per 50 x 50 m pixel (training-, validation- and test data can include also 
more than one mass movement value per 50 x 50 m pixel). 

 

6.2. Management of Parameter Maps 

All environmental parameters which were integrated in the modelling procedure are 
listed in Tab. 6.2-1. The first column gives the abbreviations which are used in the 
modelling Chapter 7.2 – 7.4. 

Bivariate statistics were calculated taking into account the distribution of mass 
movements and all environmental datasets aiming at identifying those parameters 
which show high correlations to mass movements occurrence. The results are shown 
in Tab. 6.2-2. Variables with high correlations were integrated first in the modelling 
operations. 

Bivariate statistics as well were calculated between all environmental parameters 
aiming at identifying intercorrelations between modelling parameters. φ-Coefficient 
was used to determine strength of association for binary parameters whereas 
Cramer’s V was used for non-binary parameters. Parameters showing high 
intercorrelations (i.e. Cramer’s V or φ-Coefficient > 0,3) were not used in the same 
modelling run (Tab. 6.2-3). 
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Tab. 6.2-1: List of parameters integrated in the statistical modelling 

Parameterbezeichung / 

Abbreviation of parameter 
Beschreibung Deutsch English description 

HK-DHM10 Hangklassifikation aufgrund DHM 10m Curvature Classification based on DTM 10m 

HW-DHM10 Horizontalwölbung aufgrund DHM 10m Plan Curvature based on DTM 10m 

VW-DHM10 Vertikalwölbung aufgrund DHM 10m Profile Curvature based on DTM 10m 

Wegenetz_lg_mb 
Einflussbereich Wegenetz „level gering“ aufgrund DKM und MB-
Kartierung 

Influence area of Road Network „level low“ based on Digital 
Cadastral Map (DCM) and field mapping 

Wegenetz_lh_mb 
Einflussbereich Wegenetz „level hoch“ aufgrund DKM, Luftbild 
und MB-Kartierung 

Influence area of Road Network „level high“ based on DCM 
and field mapping 

Wegenetz_lg 
Einflussbereich Wegenetz „level gering“ aufgrund DKM 
(Regionalisierungsdaten) 

Influence area of Road Network „level low“ based on DCM 
(Regionalisation Data) 

Wegenetz_lh 
Einflussbereich Wegenetz „level hoch“ aufgrund DKM 
(Regionalisierungsdaten) 

Influence area of Road Network „level high“ based on DCM 
(Regionalisation Data) 

Wald_DKM_lg_mb Wald „level gering“ aufgrund DKM und MB-Kartierung Forest „level low“ based on DCM and field mapping 

Wald_Sat_lg_mb Wald „level gering“ aufgrund Satellitenbild und MB-Kartierung Forest „level low“ based on Satellite Data and field mapping 

Wald_DKM_lg Wald „level gering“ aufgrund DKM (Regionalisierungsdaten) Forest „level low“ based on DCM (Regionalisation Data) 

Wald_DKM_lg_80 Wald „level gering“ ≥ 80% Wald pro Zelle aufgrund DKM Forest „level low“ ≥ 80% forest per pixel based on DCM 

Wald_Sat_lg 
Wald „level gering“ aufgrund Satellitenbild 
(Regionalisierungsdaten) 

Forest „level low“ based on Satellite Data (Regionalisation 
Data) 
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Wald_Sat_lg_80 
Wald „level gering“ ≥ 80% Wald pro Zelle aufgrund Satellitenbild Forest „level low“ ≥ 80% forest per pixel based on Satellite 

Data 

Wald_Sat_lh Wald „level hoch“ aufgrund Satellitenbild Forest „level high“ based on Satellite Data 

Flowaccumulation Fließakkumulation aufgrund DHM 10m Flowaccumulation based on DTM 10m 

QDisp_lg_GK_lg_fa 
Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Geol. Karte „level gering“ und Fließakkumulation 

Subsurface flow disposition „level low“ based on Geol. Map 
„level low“ and Flowaccumulation 

QDisp_lg_GK_lh_fa 
Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Geol. Karte „level hoch“ und Fließakkumulation 

Subsurface flow disposition „level low“ based on Geol. Map 
„level high“ and Flowaccumulation 

QDisp_lg_GK_lg_fa_NS_lh 

Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Geol. Karte „level gering“, Fließakkumulation und Niederschlag 
„level hoch“ 

Subsurface flow disposition „level low“ based on Geol. Map 
„level low“, Flowaccumulation and Precipitation “level high” 

QDisp_lg_GK_lh_fa_NS_lh 

Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Geologischer Karte „level hoch“, Fließakkumulation und 
Niederschlag „level hoch“ 

Subsurface flow disposition „level low“ based on Geol. Map 
„level high“, Flowaccumulation and Precipitation “level high” 

QDisp_lg_GK_lg_fa_NS_lg 

Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Geologischer Karte „level gering“, Fließakkumulation und 
Niederschlag „level gering“ 

Subsurface flow disposition „level low“ based on Geol. Map 
„level low“, Flowaccumulation and Precipitation “level low” 

QDisp_lg_GK_lh_fa_NS_lg 

Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Geologischer Karte „level hoch“, Fließakkumulation und 
Niederschlag „level gering“ 

Subsurface flow disposition „level low“ based on Geol. Map 
„level high“, Flowaccumulation and Precipitation “level low” 

QDisp_lg_BK_fa 
Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Bodenkarte und Fließakkumulation  

Subsurface flow disposition „level low“ based on Soil Map and 
Flowaccumulation 

QDisp_lg_BK_fa_NS_lg 
Unterirdischer Abfluss - Disposition „level gering“ basierend auf 
Bodenkarte, Fließakkumulation und Niederschlag „level gering“ 

Subsurface flow disposition „level low“ based on Soil Map, 
Flowaccumulation and Precipitation “level low” 
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QDisp_lh_fa 
Unterirdischer Abfluss - Disposition „level hoch“ mittels 
Feldkartierung und Fließakkumulation  

Subsurface flow disposition „level high“ based on field 
mappingand Flowaccumulation 

QDisp_lh_fa_NS_lg 

Unterirdischer Abfluss - Disposition „level hoch“ mittels 
Feldkartierung, Fließakkumulation und Niederschlag „level 
gering“ 

Subsurface flow disposition „level high“ based on field 
mapping, Flowaccumulation and Precipitation “level low” 

QDisp_lg_BK_fa_NS_lh 
Unterirdischer Abfluss - Disposition „level gering“ mittels 
Bodenkarte, Fließakkumulation und Niederschlag „level hoch“ 

Subsurface flow disposition „level low“ based on Soil Map, 
Flowaccumulation and Precipitation “level low” 

QDisp_lh_fa_NS_lh 
Unterirdischer Abfluss - Disposition „level hoch“ mittels 
Feldkartierung, Fließakkumulation und Niederschlag „level hoch“ 

Subsurface flow disposition „level high“ based on field 
mapping, Flowaccumulation and Precipitation “level high” 

NS_lg Niederschlag „level gering“ Precipitation “level low” 

NS_lh Niederschlag „level hoch“ Precipitation “level high” 

HN-DHM10 Hangneigung aufgrund DHM 10m Slope/inclination based on DTM 10m 

Sub_GK_lg 
Geologische Grunddisposition „level gering“ mittels 
Substratkonzeptkarte „level gering“ 

Geological basic disposition „level low“ based on conceptual 
soil map “level low” 

Sub_GK_lh 
Geologische Grunddisposition „level hoch“ mittles 
Substratkonzeptkarte „level hoch“ 

Geological basic disposition „level high“ based on conceptual 
soil map „level high“ 

BK Grunddisposition aufgrund Bodenkarte Basic disposition based on Soil Map 

 

Explanation of abbreviations: 
Deutsch: DHM: Digitales Höhenmodell (Topographie); DKM: Digitale Katastralmappe 
English:DTM: Digital Terrain Model; DCM: Digital Cadastral Map 
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Tab. 6.2-2: Correlations of landslide distribution with environmental parameters 

Parameter φ-Coefficient Parameter φ-Coefficient 

    HK-DHM10 0.324 QDisp_lg_GK_lh_fa 0.265 

HW-DHM10 0.206 QDisp_lg_GK_lg_fa_NS_lh 0.267 

VW-DHM10 0.323 QDisp_lg_GK_lh_fa_NS_lh 0.265 

Wegenetz_lg_mb 0.292 QDisp_lg_GK_lg_fa_NS_lg 0.253 

Wegenetz_lh_mb 0.180 QDisp_lg_GK_lh_fa_NS_lg 0.259 

Wegenetz_lg 0.290 QDisp_lg_BK_fa 0.246 

Wegenetz_lh 0.298 QDisp_lg_BK_fa_NS_lg 0.236 

Wald_DKM_lg_mb 0.385 QDisp_lh_fa 0.214 

Wald_Sat_lg_mb 0.425 QDisp_lg_BK_fa_NS_lh 0.263 

Wald_DKM_lg 0.155 QDisp_lh_fa_NS_lh 0.222 

Wald_DKM_lg_80 0.134 NS_lg 0.067 

Wald_Sat_lg 0.238 NS_lh 0.209 

Wald_Sat_lg_80 0.301 HN-DHM10 0.257 

Wald_Sat_lh 0.263 Sub_GK_lg 0.096 

Flowaccumulation 0.261 Sub_GK_lh 0.457 

QDisp_lg_GK_lg_fa 0.267 BK 0.178 
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Tab. 6.2-3: Results of calculation of correlations between all environmental parameters: strength of association is shown as φ-Coefficient for binary parameters, Cramer’s V for non-binary parameters. 
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A general strategy was developed for successively integrating different parameters 
for the statistical modelling, which followed the following principles: 

1. At first only “level low” parameters are considered, followed by “level high 
parameters”. 

2. Variables with high correlation to the distribution of landslides are integrated first. 

3. The number of variables is extended successively one by one to find out their 
influence. If there are two or more variables of equal level all of them are tested. 
The modelling is then continued subsequently with the variable showing the best 
validation results. 

4. Following the step-by-step “level low” and “level high” modelling the best result 
according to the validation is selected (“best_lg” and “best_lh” respectively). From 
these results single parameter maps are eliminated or replaced with other maps 
as one map used with different combinations of maps may contribute to the result 
to varying degrees. If a variable does not improve the result it will not be used 
subsequently. 

5. The “best_lg” and the “best_lh” results are as well re-calculated with the 
regionalisation data. 

In Fig. 6.2-1 the parameter tree with all spatial datasets used in the modelling 
procedure is presented. Here “level low” parameter maps (Chapter 5) are presented 
in yellow, “level high” in red boxes. The orange boxes are “level middle” parameter 
maps, which have to be considered as intermediate steps, not used for modelling.  

When considering the parameter maps used for modelling, it was important to 
choose only parameters, whose process-oriented connection to slope instability can 
be explained physically. The tree shows 9 main branches indicated by numbers 1 - 
9, each one representing one important process-orientated aspect for the 
development of mass movements. These 9 branches are forest (1), roads (2), 
geosphere-information (3), precipitation (4), subsurface flow (5), slope inclination (6), 
vertical curvature (7), horizontal curvature (8) and curvature classification (9). Within 
the main branches, there exist several sub-branches, which show the variations of 
this particular parameter. The rule, which had to be obeyed when varying the 
parameter combinations according to the strategy of parameter integration, was that 
in each run, only one parameter per main branch was allowed. In this way it was 
ensured that one process-orientated aspect is not emphasized too much. 
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Fig. 6.2-1: Parameter tree of available spatial datasets with regard to type of information and processing 
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7. Methods Modelling Landslide Disposition 

7.1. Validation Methods (GBA) 

Suitable validation methods are required in order to provide a satisfactory answer to 
the central question of the Adaptslide Project: “Which modelling technology/method 
and parameter map/combination of parameter maps produces which improvements 
in susceptibility maps. Only then is it possible to make meaningful comparisons 
between individual results. The validation-method issue is not a trivial one, because 
full knowledge of all past (and future) mass movements in one area is impossible. 
Several different validation methods have therefore been developed over a period of 
several decades in order to model landslide susceptibility maps. However, each 
method has its advantages and disadvantages. Thus, for the Adaptslide Project, 
different validation methods were used in order to make as objective as possible a 
statement on the quality of a susceptibility map. When selecting the validation 
methods used, there was, whenever possible, an attempt to counterbalance the 
disadvantages of one method with the advantages of another. At the GBA, that effort 
also led to the development of an additional, own validation method.  

In general, a distinction can be made between the validation of training data 
(“success rate” according to Chung and Fabbri 1999) and the validation of test data 
(“prediction rate” according to Chung and Fabbri 1999; Chapter 6.1.2). The modelling 
is calculated using the training data, whereas the test data is control data that is not 
used in modelling. The test data can be differentiated both spatially and time-related 
from the training data. However, the validation of training data indicates only how 
well the model reproduces an already known distribution of mass movements 
(“goodness of fit”). The validation of test data is more important for assessing the 
quality of the result, because it shows how well the model performs when used with 
independent and unknown data. So the “goal of network training is not to learn an 
exact representation of the training data itself, but rather to build a statistical model 
of the process that generates the data” (Bishop 1995). This is called the model’s 
generalization capability and is checked through validation of the test data. This 
validation therefore indicates how well the model’s results can be applied to areas 
where data on mass movements is lacking, or how well potential future mass 
movements can be identified using the model.  

When neural networks are used, the validation of training and validation data is done 
separately for reasons associated with modelling technology, the validation data 
being used first as a measure of the model performance. Test data are used only to 
check the final result. Finally the comparison of the validation results of different 
modelling technologies (logistic regression, neural networks, weight of evidence and 
SINMAP) was performed by the test data (Chapter 7.2. - 7.5). 

A brief description of the validation methods used for the project, along with their 
advantages and disadvantages, is given in the Chapters 7.1.1 - 7.1.6. 
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7.1.1. Validation according to the “Spatial Prediction Model” 
Approach (Chung and Fabbri 1999, 2003) 

This approach (Fig. 7.1.1-1) is probably the validation method that is currently most 
often used and is represented in the form of an x/y diagram. All pixels in the results 
are placed in descending order along the x-axis (axis of abscissa), according to their 
degree of susceptibility. The y-axis (axis of ordinates) indicates the cumulated 
percentage of mapped mass movements for the area in the respective susceptibility 
class. The gradient of the curve produced in this manner corresponds to the “ratio of 
effectiveness”, which indicates the predictive power of a susceptibility class, and 
which can also be seen as a kind of standardized indicator of mass-movement 
density within a specific susceptibility class. Low gradients are therefore the aim 
when there are low susceptibility values, and steep gradients when there are high 
susceptibility values. In graphic terms, a result improves the farther the curve lies 
toward the upper left. In simpler terms, instead of the curve, the area under the curve 
(AUC) can also be used as the validation measurement, even though this value 
cannot of course reproduce the run of the entire curve. 

This validation approach has the following advantages: the standardized 
measurement of mass-movement density is more meaningful than the simple 
number of mass movements per class, which is strongly dependent on the spatial 
extent of the susceptibility class. Furthermore, the method does not depend on a 
threshold value. This is an advantage because the threshold value (between stable 
and unstable) does not have to be fixed in advance. It can be determined on the 
basis of the validation and the use of the model in a specific context (Begueria 
2006). A second, and even greater advantage is that validations without threshold 
values in the case of the same or similar model runs (particularly for neural networks) 
are much more stable with respect to fluctuations/uncertainties in results due to 
model technology than are the validation methods that refer to threshold values. With 
validation methods that are dependent on threshold values, even slight fluctuations 
around the threshold value can heavily influence the validation result, whereas 
methods that are independent of threshold values remain largely unaffected. And 
finally, with standardized density measurement and independence of a threshold 
value, comparisons can be made between the results of different modelling 
technologies. 

This method has the following disadvantages: because of its independency on 
defined disposition classes and threshold values, poor results (for example, those 
with few mass movements in high classes or many mass movements in low classes) 
can be validated as “very good” due to displacement of the susceptibility classes. 
Furthermore, a reduction or enlargement of the area under investigation can 
completely displace the susceptibilities on the x-axis, which can result in a major 
change in the validation results for the same mass-movement points. As a 
consequence, several different areas can no longer be compared, because if they 
are, a high disposition class in one area might correspond to a low disposition class 
in another area. Furthermore, the method produces only a summarized area-wide 
validation, so that poor results in individual sub-areas can be compensated for a 
good result in another sub-area. And finally, using this method, only the mass-
movement points (= true positives and false positives) are assessed (y-axis), 
whereas the non mass-movement points (= true negatives and false negatives) are 
included only indirectly via the x-axis. 
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Fig. 7.1.1-1: Validation according to Chung & Fabbri (1999) 

  

7.1.2. Recognition Rate (=Sensitivity) 

This validation method simply reproduces the percentage of correctly classified 
landslides (= true positives) relative to the total number of landslides (= true positives 
and false positives, Begueria 2006). This requires the specification of a threshold 
value for the transition from stable to unstable, which is usually assumed to be 0.5 
(as it is for Adaptslide). 

The advantage of this method is that it is very simple to grasp, calculate and employ 
(particularly for comparative purposes), because it consists of only one validation 
value. In addition, this method also relates to the disposition classes, so that 
susceptibility maps with many mass movements in low classes or few mass 
movements in high classes always have poor validation. 

The method has the following disadvantages: because it is dependent on a -
threshold value, that value must be defined in advance. On the whole, this method 
involves major simplification, and with the same or similar model runs (particularly in 
the case of neural networks), it is much more susceptible to fluctuations/uncertainties 
that are due to modelling technology. In addition, this method incorporates only the 
number of mass movements per class, not the more meaningful mass-movement 
density. Furthermore, this method relates only to the mass movements and enables 
only a summarized area-wide validation (see above). 

 

7.1.3. Distribution of Landslides over Susceptibility Classes 

This widely used method provides a (cumulative) presentation of mass movements 
in each susceptibility class (Fig. 7.1.3-1). A good result is obtained when there are 
few landsides in the low classes (corresponding to the steep lines) and many 
landslides in the high classes (corresponding to the flat lines). Roughly speaking, this 
means that a result is better the farther the curve runs toward the upper left. 
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Fig. 7.1.3-1: Cumulative distribution of landslides over the susceptibility classes of time-related test 

data 1e and 2 

 

The advantages of this method are that it refers to the susceptibility classes, it is 
highly descriptive, and that, aside from the definition of as many susceptibility 
classes as possible, it is independent of threshold values. The method therefore 
clearly provides more differentiation and is less subject to fluctuation than the 
recognition rate, which is incorporated into the method in any case. 

The major disadvantage of this method is that it is not easily quantifiable (AUC is not 
used), which therefore leaves great scope for subjective interpretation. In addition, it 
does not include mass-movement density. Furthermore, the method refers only to 
mass movements and enables only a summarized area-wide validation (see above). 

 

7.1.4. Receiver Operating Characteristic (ROC) 

The ROC method presents sensitivity and specificity together in one validation. 
Specificity represents the correctly classified landslide-free pixels (= true negatives) 
in relation to the total number of landslide-free pixels (= true negatives and false 
negatives). In this validation, the threshold value moves in the histogram of 
landslides/no-landslides distribution from the lowest to the highest susceptibilities 
(Fig. 7.1.4-1), a point being entered on the ROC curve at every threshold value (Fig. 
7.1.4-2). If the threshold value is low (to the left on the histogram), a high number of 
true positives will be achieved, but also a low number of true negatives. The opposite 
applies with a high threshold value (Begueria 2006). The result improves, the farther 
the curve lies to the upper right. Here too, the AUC can mostly be used as a 
validation figure. 
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Fig. 7.1.4-1: ROC – Histogram of train data of result 1e: landslide / no-landslide pixels 

 

 
Fig. 7.1.4-2: Curve of Receiver Operating Characteristic (ROC) 

 

The advantage of ROC compared to the other validation methods described is that 
both mass movements and non-mass movements can be taken into account in the 
validation. Other advantages include the method’s independence from threshold 
values and the herefrom resulting stability concerning fluctuations at same or similar 
model runs (particularly in the case of neural networks, see above). 

The disadvantages of this validation method are that the susceptibility classes are 
only indirectly included, density is not really incorporated, and it enables only a 
summarized area-wide validation. 

 

7.1.5. GBA Method 

The GBA method is, in principle, a further development of the recognition rate, or of 
the “distribution of landslides over susceptibility classes”. The former has the 
disadvantage, among others, that it shows only one threshold value (see above), and 
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the latter that it is difficult to quantify (see above). The GBA method, which is also 
based on the “distribution of landslides over susceptibility classes”, tries to overcome 
these disadvantages. This is done by calculating one value for the high and one 
value for the low susceptibilities, these two values then being added together. This 
splitting into two values makes it possible to analyze model quality in isolation, i.e. for 
stable areas only or for unstable areas only. The values used are the gradient angle 
of the upper or lower classes in the mass movement distribution, the quality of the 
results increasing with an increasing angle. 

This method has the following advantages: it is based on susceptibility classes, it is 
not dependent on individual threshold values and is therefore reasonably stable with 
respect to fluctuations at the same or similar model runs (however not as stable as 
the method according to Chung & Fabbri (1999) and ROC), and it enables 
consideration in isolation of stable and unstable areas. 

The disadvantages of this method are that it incorporates only mass-movement 
points, mass-movement density is not taken into account, and it too only enables a 
summarized area-wide validation. 

 

7.1.6. Use of Validation Methods 

The way in which the different validation methods described above are combined in 
order to produce an overall validation are described in the respective chapters on 
modelling (cf. Chapter 7.2, 7.3, 7.4 and 7.5). The validation methods according to 
Chung & Fabbri (1999) and the ROC are used in order to compare the different 
modelling methods. 

 

7.2. Modelling and Validation of Susceptibility Maps by Using 
Neural Networks (GBA) 

7.2.1. Fundamentals 

Neural networks 

Neural networks are particularly suitable for modelling when the functional context of 
a plurality of variables is not explicitly known and/or it is complex and not linear. The 
multilayer perceptron used here consists of an input layer, a hidden layer, and an 
output layer (Fig. 7.2.1-1). In the input layer, variables are added to the network. In 
the output layer, the information “mass movement yes/no” is defined for the network, 
or susceptibility is calculated. In the layers there are nodes (containing an activation 
function) connected by synapses (weights are found here).  
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Fig. 7.2.1-1: Schematic representation of a multilayer perceptron 

 

During the training phase, the network is trained through given network‘s input 
variables and given output [the known mass-movement information (yes/no)]. The 
network then searches for an ideal connection between input variables and mass-
movement data by optimizing the weights. This optimization is done through 
minimization of the MS error (mean square error between predefined and calculated 
output), the calculated output representing the susceptibility within the range [0, 1]. 
With the help of a learning algorithm [here delta bar delta (Bishop 1995)], there is a 
search for the minimum error surface. For training, the data set must be split into 
training and validation data (Chapter 6.1.2), the network being trained with training 
data and being validated parallel by the validation data, which shows the model 
performance. The ideal weight is reached when the error curve of the validation data 
displays its absolute minimum, this is the moment when the training is stopped. In 
order to optimize performance during training, the user can vary the number of 
hidden layers, the number of nodes, the learning algorithm, or various network 
parameters. 

The network generated in this way is saved and led to the test phase, in which 
independent test data (Chapter 6.1.2 and 7.1) is now added to the network. This 
data again contains the input variables, but no predefined output. The network now 
calculates the output (= susceptibility) independently, and through comparison of the 
calculated output with the known output, the performance of the network and the 
capability of generalization (Chapter 7.1) can be tested (Smith 1993). Finally, the 
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network for the AdaptSlide project is fed with the regionalisation data (Chapter 6.1.2) 
without predefined output in order to produce the 50 m raster map. 

 
Validation strategy for neural networks 
When modelling with neural networks, there must be continuous attention to the data 
set used for validation. This is highly important, because the selection of the best 
result depends on it. The validation data running synchronously, is therefore also 
used during the training phase. However there are two different approaches to the 
comparison of results that are produced using different parameter constellations: the 
first approach, which is widely used, stipulates that the validation data must always 
be used here as well, whereas the independent test data is used only once, at the 
very end, in order to validate the final results. It is assumed that the test data is 
genuinely independent only in this form, and that if there has been repeated previous 
use of the data, it would have been indirectly incorporated into the selection of 
results, thereby losing its independence. 

The second approach applies the use of the test data when comparing the results of 
different parameter constellations. It is assumed that only the test data is genuinely 
independent and therefore suitable for use during objective comparison of results. 
The validation data, on the other hand, indirectly influences training, as it has already 
been used during the training phase as a stop criterion. It is therefore dependent 
data and as such not suitable for independent comparison of results. 

Because both approaches have their pros and cons, the first validation approach 
was ultimately chosen for the validation of neural networks due to its wider use. It 
was ultimately necessary to use the second approach to compare the results of a 
plurality of modelling technologies, because the other models used for the project 
were calculated without validation data. It was therefore impossible to avoid some 
duplication of methodology when validating the results of neural networks. 

In order to determine when the validation of a result can be assessed as better, 
worse, or equally as good as others, it was necessary to determine the limits within 
which a result can be considered reproducible and how, in turn, the uncertainty of 
results affect the results of different validation methods. This is not a trivial issue with 
regard to neural networks, because this method, due to the constantly different, 
random initialization of the initial weights with the same parameter settings, always 
produces slightly different results. Numerous test runs were therefore carried out with 
the same parameter settings before actual modelling, in order to obtain threshold 
values for the margin of fluctuation in the validation values of a result with the same 
settings for each validation method (Chapter 7.1). If, during modelling, the 
differences in validation values of two results lay within these threshold values, the 
results were assessed as equally good; if they lay outside these values, the result 
was deemed better/worse. 

As described before, there are different validation methods, each with certain 
advantages and disadvantages. In order to obtain the most meaningful validation 
possible, which takes into account and equalizes various method-specific aspects, 
these validation methods are combined into a validation strategy. To that end, an 
unequivocal, clearly applicable validation scheme was developed for validation of the 
results obtained using neural networks. This is a multi-stage, progressive procedure 
in which there is a transition to the next validation stage only when the validation 
criterion of the stage in question has shown that both of the results compared are 
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equally good, taking into account the respective margin of fluctuation (model 
uncertainty).  

The validation scheme, which is implemented primarily with validation data, is 
explained below on the basis of the following prior considerations:  Because the 
recognition rate displays major fluctuations due to the use of only one threshold-
value criterion, the recognition rate was used only as a first criterion in the sense of a 
minimum requirement at a low level (>70%). If this criterion was not met, the result 
was immediately rejected. In the second validation stage, therefore, the recognition 
rate was only incorporated as one sub-criterion when there were differences of > 
10%.  When there were smaller differences, it was not taken into account. 

The validations according to Chung & Fabbri (1999), the ROC and the method 
developed by GBA were considered particularly significant, so these validations were 
taken into account in the second decision-step. Since it turned out that validation 
according to Chung & Fabbri (1999) and ROC always produced quite similar results, 
these methods were combined into one sub-criterion. The GBA method was then 
chosen as second sub-criterion. Only when the two sub-criteria produce the same 
results, the third validation step is applied, in which the validation results of the time-
related data are compared. These are subjected to purely visual examination 
(without AUC) due to the low number of points, with the aid of the two sub-criteria: 
“validation according to Chung & Fabbri (1999)” and “cumulative mass-movement 
distribution across the susceptibility classes.”  

If both results can still be assessed as equally good, the test data is compared during 
a fourth validation stage in accordance with the second validation step. If no 
better/poorer result is obtained after applying the complete step-wise strategy for 
validation, preference will be given, when comparing two parameter maps with the 
same theme, to the map whose preparation involved the least effort. The strategy for 
validation with its individual validation steps can be summarized as follows: 

 

1st step: decision criterion: recognition rate > 70%, otherwise rejection 

2nd step: decision criterion: comparison of sub-criteria  

• Recognition rate (only in the case of differences > 10%) 

• Validation according to Chung & Fabbri (1999) + ROC 

• GBA method 

3rd step: decision criterion: time-related data [“Mass-movement distribution across 
susceptibility classes,” validation according to Chung & Fabbri (1999)]. 

4th step: decision criterion: Test data according to the scheme in the 2nd stage 

5th step: decision criterion: parameter map involving less effort  
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7.2.2. Results of Modelling and Modelling Validation 

 7.2.2.1 Modelling Results using “Level Low” Parameter Maps 

The strategy for model integration of parameter maps described in Chapter 6.2 result 
in 31 “level low” model runs for modelling by means of neural networks, which are 
listed, including the respective parameter combinations, in Tab. 7.2.2.1-1. The 
parameter combinations of individual network runs do not necessarily correspond to 
the parameter combinations of runs with the other modelling methods used in the 
project (Chapter 7.3, 7.4. and 7.5). In modelling with neural networks, run 10 was 
selected, after the first 11 “level low” runs, as the best “level low” run (“best_lg”), so 
that all subsequent “level low” runs were variations of the parameter combinations of 
run 10 (Chapter 6.2).   

 

Tab. 7.2.2.1-1 part 1: Model runs “level low” and the parameter maps used (abbreviation of parameter 

maps, see Tab. 6.2-1)  

# Run Parameter maps used Relation to other runs 

Run 1 Wald_DKM_lg_mb, VW-DHM10, HN-DHM10  

Run 2 Wald_Sat_lg_mb, VW-DHM10, HN-DHM10 
as Run 1, but using Wald_Sat_lg_mb instead of 
Wald_DKM_lg_mb  

Run 3 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb 

as Run 2, but adding Wegenetz_lg_mb 

Run 

3dkm 
Wald_DKM_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb 

as Run 3, but using Wald_DKM_lg_mb instead of 
Wald_Sat_lg_mb 

Run 4 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Flowaccumulation 

as Run 3, but adding Flowaccumulation 

Run 5 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa 

as Run 4, but using QDisp_lg_GK_lg_fa instead of 
Flowaccumulation 

Run 6 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lh_fa 

as Run 3, adding QDisp_lg_GK_lh_fa, as Run 4, but 
using QDisp_lg_GK_lh_fa instead of 
Flowaccumulation; as Run 5, but using 
QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa 

Run 7 
Wald_Sat_lg_mb, HK-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa 

as Run 5, but using HK-DHM10 instead of VW-
DHM10 

Run 9 
Wald_Sat_lg_mb, HK-DHM10, VW-DHM10, HN-
DHM10, Wegenetz_lg_mb, QDisp_lg_GK_lg_fa 

as Run 5, but adding HK-DHM10 

Run 10 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 5, but adding Sub_GK_lg 

Run 11 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Sub_GK_lg 

as Run 2, but adding Sub_GK_lg 

Run 12 
Wald_DKM_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 10a, but using Wald_DKM_lg_mb instead of 
Wald_Sat_lg_mb 

Run 13 
VW-DHM10, HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 10, without Wald_Sat_lg_mb 

Run 14 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lh_fa, Sub_GK_lg 

as Run 10, but using QDisp_lg_GK_lh_fa instead of 
QDisp_lg_GK_lg_fa 

Run 15 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lg 

as Run 10, but without QDisp_lg_GK_lg_fa 

Run 16 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 10, but without Wegenetz_lg_mb 

Run 17= 

Run 18 
Wald_Sat_lg_mb, HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 10, but without VW-DHM10 

Run 19 = 

Run 26 

Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg, 
HK-DHM10 

as Run 10, but adding HK-DHM10  
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Tab. 7.2.2.1-1 part 2: Model runs “level low” and the parameter maps used (abbreviation of parameter 

maps, see Tab. 6.2-1) 

# Run Parameter maps used Relation to other runs 

Run 20 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg, 
NS_LG 

as Run 10, but adding NS_lg 

Run 21 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lg, 
QDisp_lg_GK_lg_fa_NS_lg 

as Run 10, but using QDisp_lg_GK_lg_fa_NS_lg 
instead of QDisp_lg_GK_lg_fa 

Run 22 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lg, 
QDisp_lg_GK_lh_fa_NS_lg 

as Run 14, but using QDisp_lg_GK_lh_fa_NS_lg 
instead of QDisp_lg_GK_lh_fa; as Run  21 but using 
QDisp_lg_GK _lh_fa_NS_lg instead of 
QDisp_lg_GK_lg_fa_NS_lg 

Run 23  
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lg, QDisp_lg_GK_lh_fa, 
NS_LG 

as Run 10, but using QDisp_lg_GK_lh_fa + NS_lg 
instead of QDisp_lg_GK_lg_fa; as Run 20 but using 
QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa; 
as Run 14, but adding NS_lg 

Run 24  
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lg, QDisp_lg_BK_fa 

as Run 10, but using QDisp_lg_BK_fa instead of 
QDisp_lg_GK_lg_fa 

Run 25 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lg, 
QDisp_lg_BK_fa_NS_lg 

as Run 10, but using QDisp_lg_BK_fa_NS_lg 
instead of QDisp_lg_GK_lg_fa; Run  24 using 
QDisp_lg_BK_fa_NS_lg instead of QDisp_lg_BK_fa 

Run 27 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, Sub_GK_lh, QDisp_lg_GK_lh_fa, 
HK-DHM10 

as Run 10, but using QDisp_lg_GK_lh_fa instead of 
QDisp_lg_GK_lg_fa, Sub_GK_lh instead of 
Sub_GK_lg + HK_DHM10; as Run 19 but using 
QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa, 
Sub_GK_lh instead of Sub_GK_lg; as Run 6 but 
adding HK_DHM10 and Sub_GK_lh 

Run 28 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg, 
HK-DHM10, NS_lg 

as Run 19, but adding NS_lg; as Run 10, but adding 
HK-DHM10 and NS_lg 

Run 29 
Wald_Sat_lg, VW-DHM10, HN-DHM10, 
Wegenetz_lg, QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 10, but using Wegenetz_lg instead of 
Wegenetz_lg_mb and Wald_Sat_lg instead of 
Wald_Sat_lg_mb 

Run 30 
Wald_Sat_lg, VW-DHM10, HN-DHM10, 
Wegenetz_lg, Sub_GK_lg, QDisp_lg_BK_fa 

as Run 24, but using Wegenetz_lg instead of 
Wegenetz_lg_mb and Wald_Sat_lg instead of 
Wald_Sat_lg_mb; as Run 10, but using 
QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa, 
Wegenetz_lg instead of Wegenetz_lg_mb and 
Wald_Sat_lg instead of Wald_Sat_lg_mb 

Run 31 Wald_Sat_lg, VW-DHM10, HN-DHM10 

as Run 2, but Wald_Sat_lg instead of 
Wald_Sat_lg_mb; as Run 10, but without 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg 
and Wald_Sat_lg instead of Wald_Sat_lg_mb 

Run 32 
Wald_Sat_lg, VW-DHM10, HN-DHM10, 
Wegenetz_lg_mb, QDisp_lg_GK_lg_fa, Sub_GK_lg 

as Run 10, but using Wald_Sat_lg instead of 
Wald_Sat_lg_mb 

 
 

 

The following discussion describes the results of the model runs carried out using 
“level low” parameter maps. The results are evaluated based on the validation 
strategy presented in Chapter 7.2.1 (Tab. A1 in Annex) and compared (validation 
comparisons: Tab. A2 in the Annex). In comparing results, particular attention is 
given to the issue of whether a new parameter map leads to improvement or 
deterioration in modelling validation results in the sense of the general question 
asked by the Adaptslide project (“Which effort produces which benefit?”). For this 
reason, the result comparisons are also summarized by each new involved 
parameter map. In addition, there is discussion of the changes in susceptibility map 
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and parameter influences on the model that are brought about by the new parameter 
map. 

 

Forest “level low” (Wald_DKM_lg_mb, Wald_Sat_lg_mb)  

 Comparison of the parameter maps forest “level low”: 

- Forest „level low“ based on Satellite Data and field mapping (Wald_Sat_lg_mb) 

- Forest „level low“ based on digital cadastral map and field mapping 
(Wald_DKM_lg_mb)  

The parameter forest was generally a very important parameter for modelling, 
because its integration invariably produced clear improvement in the model 
performance. The reason for that was that with this parameter, there was a reduction 
in susceptibilities inside forest, and an increase in susceptibilities outside forest. Both 
of the “level low” forest parameter maps used produced equally good results. Thus, 
for the following model calculations employing other parameter map combinations, 
there was a decision, based on the criterion “relevance to event August 2005,” in 
favour of forest map based on of satellite data.  

The parameter forest was generally a very important parameter for modelling, 
because its integration invariably produced clear improvement in the model 
performance. The reason for that was that with this parameter, there was a reduction 
in susceptibilities inside forest, and an increase in susceptibilities outside forest. Both 
of the “level low” forest parameter maps used produced equally good results. Thus, 
for the following model calculations employing other parameter map combinations, 
there was a decision, based on the criterion “relevance to event August 2005,” in 
favour of forest map based on of satellite data.  

First, the two parameter maps for forest had to be compared by means of runs 1 and 
2, where run 1 incorporated Wald_DKM_lg_mb and run 2 Wald_Sat_lg_mb. In 
addition to forest, both runs included only the 2 additional parameters profile 
curvature (VW-DHM10) and slope (HN-DHM10) (Tab. 7.2.2.1-1). The susceptibility 
maps for runs 1 und 2 (Fig. 7.2.2.1-1) now presented a very similar image with a 
tendency toward lower susceptibilities in forest and higher values in steep terrain 
(often lower valley flanks) and in vertical-concave areas. 
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Fig. 7.2.2.1-1: Susceptibility map of run 2 

 

However, due to the GBA validation strategy used, the results of runs 1 and 2 were 
seen as equally good, because the differences between all validation measurements 
were within the threshold values (Tab. A2 in Annex). This is also obvious from the 
validation curve according to Chung & Fabbri (1999, Fig. 7.2.2.1-2). 

 

 

Fig. 7.2.2.1-2: Validation according to Chung and Fabbri (1999) 
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The influences of the three parameters employed, which are captured by a sensitivity 
analysis, are also approximately equal, the parameter forest being the most 
influential in both cases (Fig. 7.2.2.1-3).  

 

 
Fig. 7.2.2.1-3: Sensitivity analysis of run 2 

 

In addition, the influence of these two forest maps was compared by means of the 
runs 3dkm and 3 (see: Road network “level low”-), and the runs 10 and 12 (Tab. 
7.2.2.1-1). Here too, the results were more or less equally good, with only run 3dkm 
performing very slightly better than run 3. Thus, as neither of the two forest 
parameter maps used led to genuinely better results, preference was given to the 
forest map Wald_Sat_lg_mb in further work, because of its presumably greater 
actuality to the event. 

Finally, in run 13 (Tab. 7.2.2.1-1) the parameter Wald_Sat_lg_mb was not taken into 
account, while the other parameters corresponded to those of run 10 (see Geological 
basic disposition). It was seen that this result led to obviously poorer validation 
results (Tab. A2 in Annex). This is explained by the fact that the number of pixels 
showing medium susceptibilities was obviously higher than it was in run 10, so that 
there was an increase in susceptibilities in forest and a decrease in susceptibilities 
outside forest. In addition, very high values were seen in the difference map for runs 
13 and 10, which also manifested the strong influence of forest. It can therefore be 
concluded that the parameter Wald_Sat_lg_mb is a highly significant factor in 
obtaining better and clear results and is therefore a very important parameter in 
modelling.  

 

Road network “level low”- (=Wegenetz_lg_mb) 

 Significance of the parameter maps influence area of road network –“level low” 
(Wegenetz_lg_mb): 

The use of this parameter leads to an improvement in model performance. It has a 
major influence on the result, leading to a strong rise in susceptibility in areas 
influenced by roads and a strong decrease in susceptibility in areas at some distance 
from roads. 
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In order to study the influence of the parameter influence areas of road network 
“level low” on model performance, the results of the runs 1 and 3dkm, 2 and 3 and 
16 and 10 were compared. The runs 3dkm, 3 and 16 hereby represent the respective 
parameter combinations of runs 1, 2 and 10, with the addition of the parameter 
Wegenetz_lg_mb (Tab. 7.2.2.1-1).  

The difference map comparing run 3 to run 2 (Fig. 7.2.2.1-4) shows that integration 
of the parameter Wegenetz_lg_mb into the modelling produces major changes in 
map appearance, making the roads on the difference map visible. In the influence-
area of roads, there is an increase (blue), and at some distance from roads, a 
decrease in susceptibility, so the neural network reacts to these parameters in the 
desired and expected manner. The sensitivity analysis also shows considerable 
influence of the parameter Wegenetz_lg_mb, although it is somewhat weaker than 
the influence of the other parameters. The same picture was seen when the results 
of the runs 3dkm and 1 were compared, as well as the results of runs 10 and 16. 

 

Fig. 7.2.2.1-4: Difference map of run 3 – run 2 

 

The validation comparisons (Tab. A2 in Annex) showed that in all cases, the results 
of runs with the parameter Wegenetz_lg_mb (run 3dkm, 3 and 10) were better than 
those without that parameter (run 1, 2 und 16). Incorporation of the parameter 
Wegenetz_lg_mb therefore led to improvement in model performance, making this 
an important parameter. 
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Flow accumulation 

 Significance of the parameter map Flowaccumulation  

This parameter has a moderate influence on the result and leads to a slight 
improvement in model performance. Increasing flow accumulation tends to be 
accompanied by a rise in susceptibility. 

In order to study the influence of the parameter Flowaccumulation on the model 
performance, the results of runs 4 and 3 were compared. Run 4 was calculated using 
the parameters of run 3 and the parameter Flowaccumulation (Tab. 7.2.2.1-1). The 
sensitivity analysis and the difference maps demonstrate that the parameter 
Flowaccumulation does have an impact on model performance, but that it is clearly 
smaller than any of the other parameters. With increasing flow accumulation, there is 
a tendency toward greater susceptibility. Finally, the validation comparison (Tab. A2 
in Annex) shows better values for run 4 than for run 3, which leads to the conclusion 
that the parameter Flowaccumulation generally contributes to improved model 
performance. 

 

Subsurface flow disposition “level low”  

 Comparison of the parameter maps subsurface flow disposition –“level low”: 

- Subsurface flow disposition “level low” based on geological map “level low” and flow 
accumulation (QDisp_lg_GK_lg_fa) 

- Subsurface flow disposition “level low” based on geological map “level high” und 
flow accumulation (QDisp_lg_GK_lh_fa) 

- Subsurface flow disposition “level low” based on soil map und flow accumulation 
(QDisp_lg_BK_fa) 

The use of subsurface flow disposition parameter maps generally leads to an 
improvement in the model performance, and this also applies in comparison with 
Flowaccumulation. When this parameter is integrated, there tends to be an increase 
in susceptibility in areas of higher subsurface flow disposition. However, when the 3 
subsurface flow disposition variants used were compared, it was noted that the 
susceptibility maps produced usually showed only minor deviations, and the 
validations were therefore practically just as good. These minor differences can be 
attributed to subsurface flow disposition usually having only a moderate influence on 
results, and the substituted substrate map making up only a part of this parameter. 
So taking different variants of subsurface flow disposition into account could not 
produce significantly better results.  

 

Subsurface flow disposition “level low” base on geological map “level low” and flow 
accumulation (QDisp_lg_GK_lg_fa) 

This subsurface flow disposition parameter was included in modelling in run 5, in 
addition to the parameters from run 3 (Tab. 7.2.2.1-1). The influence of 
QDisp_lg_GK_lg_fa on the model performance was now studied by comparing the 
results of runs 5 and 3, and 15 and 10 respectively. There was comparison to the 
parameter Flowaccumulation through runs 5 and 4 (Tab. 7.2.2.1-1). 
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After integration of the parameter QDisp_lg_GK_lg_fa, a tendency was now seen, in 
the result of run 5 (Fig. 7.2.2.1-5), toward a reduction in susceptibility in areas of 
lower subsurface flow disposition and an increase in areas of higher subsurface flow 
disposition, so that the parameter`s influence into the modelling was in the expected 
and desired manner.  

 

Fig. 7.2.2.1-5: Susceptibility map of run 5 

 

However, as shown by the sensitivity analysis of run 5 (Fig. 7.2.2.1-6), the parameter 
QDisp_lg_GK_lg_fa (as before in the case of parameter Flowaccumulation) has only 
a rather moderate influence on the result, whereas the other parameters all have a 
stronger influence. 

 
Fig. 7.2.2.1-6: Sensitivity analysis of run 5 
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The comparison of the validation results (Tab. A2 in Annex) now shows that the 
results with QDisp_lg_GK_lg_fa (run 5 or 10) are better than the results achieved 
without these parameters (run 3 or 15). In comparison to run 4 (with 
Flowaccumulation), run 5 performs slightly better. Integration of the parameter 
QDisp_lg_GK_lg_fa into the modelling therefore led to an improvement in the model 
performance, whereas slight improvements were also achieved with respect to 
Flowaccumulation. 

 

Subsurface flow disposition “level low” based on geological map “level high” and flow 
accumulation (QDisp_lg_GK_lh_fa) 

In run 6, this subsurface flow disposition parameter was incorporated into the 
modelling in addition to the parameters from run 3 (Tab. 7.2.2.1-1). The influence of 
this parameter on the model performance was now studied by comparing the results 
of runs 6 and 3, and 14 and 15 respectively (Tab. 7.2.2.1-1). Comparisons were 
made between the parameters QDisp_lg_GK_lh_fa and QDisp_lg_GK_lg_fa by 
juxtaposing the runs 6 and 5, 10 and 14, 22 and 21 and 23 und 20 respectively (Tab. 
7.2.2.1-1). In runs 21 and 22, subsurface flow disposition was calculated with 
integrated “level low”-precipitation (see precipitation). 

As in the case of QDisp_lg_GK_lg_fa, this runoff parameter was seen as having only 
a moderate influence, even though it influenced the modelling in the expected way. 
An improvement in the model performance through integration of this parameter 
could be verified only in the validation comparison between runs 6 and 3, whereas 
the result of run 14, interestingly enough, was just as good as that of run 15. 
However, in the comparison of run 6 to run 4, the parameter QDisp_lg_GK_lh_fa 
was seen as slightly better than Flowaccumulation. 

In the comparison between the runs with QDisp_lg_GK_lh_fa and those with 
QDisp_lg_GK_lg_fa, there were, in general, only slight changes in the map’s 
appearance. One example that can be cited is the difference map for runs 6 and 5 
(Fig. 7.2.2.1-7). The slight differences seen here can be attributed to subsurface flow 
disposition being only a moderate factor in the results in both cases, and the 
substituted geological map (“level low” to “level high”) being, in turn, only one part of 
this parameter. More significant changes are seen only in the difference map 
between runs 10 and 14.  
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Fig. 7.2.2.1-7: Difference map of run 6 – run 5 

 
Given what were in most cases minor changes in the map, the validation 
comparisons of runs 6 and 5, 22 and 21, and 23 and 20 respectively were seen as 
equally good (Tab. A2 in Annex). Only run 14, which included the parameter 
QDisp_lg_GK_lh_fa, produced an even poorer validation result than run 10.  

In comparison to QDisp_lg_GK_lg_fa, the parameter QDisp_lg_GK_lh_fa resulted 
neither in significant changes in map appearance nor improvement in model 
performance (in the case of run 14, there was actually a deterioration in model 
performance). Therefore, in the interest of simplification, and because of the 
deterioration seen with QDisp_lg_GK_lh_fa in run 14, the parameter 
QDisp_lg_GK_lg_fa was preferred in further processing.   

 

Subsurface flow disposition “level low” based on soil map und flow accumulation 
(QDisp_lg_BK_fa) 

In run 24 (Tab. 7.2.2.1-1), this runoff parameter was incorporated into modelling in 
addition to the parameters from run 3 and the geological basic disposition “level low” 
(Sub_GK_lg). Here too, sensitivity analysis showed that this parameter had only 
moderate influence on the result, although it influenced the modelling in the expected 
manner (QDisp_lg_GK_lg_fa). Comparison to QDisp_lg_GK_lg_fa was carried out 
by means of run 10 (see Geological basic disposition). It was shown here, as with the 
subsurface flow disposition variants (see above), that the susceptibility maps from 
runs 10 and 24 deviated very little from each other, and the validation comparison 
also presented both results as equally good (Tab. A2 in Annex).  
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Curvature classification 

 Significance of the parameter map curvature classification (HK-DHM10) 

This parameter always leads to a slight deterioration in model performance. 

The parameter was incorporated into modelling in run 7, the parameter combination 
of run 7 differing from that of run 5 by the replacement of VW-DHM10 with HK-
DHM10 (Tab. 7.2.2.1-1). Due to the curvature classification, the susceptibility map 
for run 7 is somewhat more agitated than that for run 5, which can be attributed to 
the parameter HK-DHM10, which is strongly differentiating on a small scale. Because 
HK-DHM10 is split into 9 parameters (one parameter per class), these individual 
parameters play a much weaker role than VW-DHM10 in the modelling. A validation 
comparison (Tab. A2 in the Annex) shows that the result without HK-DHM10 (run 5) 
is slightly better than that containing this parameter (run 7).  

There was also a comparison of runs that incorporated HK-DHM10 in addition to 
VW-DHM10 (runs 9 and 5, runs 19 und 10) (Tab. 7.2.2.1-1). The validation 
comparisons (Tab. A2 in Annex) for these runs also showed the results without 
curvature classification as slightly better. In general, therefore, the inclusion of 
curvature classification resulted in all cases in a slight deterioration in model 
performance, which is why this parameter was not included in further modelling. 

 

Geological basic disposition “level low” 

 Significance of the parameter map geological basic disposition “level low” 
(Sub_GK_lg) 

Despite its very weak and “contrary” influence on the result, this parameter leads to a 
slight improvement in model performance. 

This parameter was incorporated into the modelling in run 10, in addition to the 
parameters from run 5 (Tab. 7.2.2.1-1). The influence of Sub_GK_lg on the model 
performance was then studied by comparing runs 10 and 5, and also runs 11 and 2 
(run 11 is run 2 with the addition of Sub_GK_lg, Tab. 7.2.2.1-1). 

The susceptibility map from run 10, which together with run 24 represents the best 
“level low” result without precipitation, is shown in Fig. 7.2.2.1-8. It also displays a 
tendency toward higher susceptibilities outside forest, on steeper slopes, on vertical 
concave slopes, in areas of high subsurface flow disposition and in areas affected by 
roads. 
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Fig. 7.2.2.1-8: Susceptibility map of run 10 

 

The influence of geology (Sub_GK_lg) is obvious in the difference map from runs 10 
and 5 (Fig. 7.2.2.1-9), however in a way opposite to that expected. Higher 
susceptibilities in run 10 (blue) appear in a region of lower geological basic 
disposition (phyllitic mica schist), whereas lower susceptibilities (red) appear in 
lithological units classified as landslide-prone (black shale, green shale). These 
differences between runs 10 and 5 are quite small, however, which can be explained 
by the very slight influence of the parameter Sub_GK_lg on the model result (Fig. 
7.2.2.1-10).  
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Fig. 7.2.2.1-9: Difference map of run 10 – run 5 

 

 

Fig. 7.2.2.1-10: Sensitivity analysis of run 10 

 

The “contrary” influence of Sub_GK_lg can therefore be explained either by the 
statistical connection between mass-movement distribution and geological units 
being too weak and therefore unclear to the neural network, or the geological basic 
disposition leading, precisely in landslide-prone areas, to greater mass erosion, 
which in turn results in lower slopes, and thus less landslide-susceptibility. 

The validation comparison from runs 10 and 5 (Tab. A2 in Annex) now showed that 
the result of run 10, despite the “contrary” influence of Sub_GK_lg, indicated slightly 
better performance than run 5. This was also confirmed by the comparison between 
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runs 11 and 2 (which also produced very similar map images, Tab. A2 in Annex). 
The integration of Sub_GK_lg into the modelling, despite the very weak and 
“contrary” influence of this parameter, thus led to a slight improvement in the model 
performance, which is why the parameter was also retained for further calculations. 

 

Profile curvature 

 Significance of the parameter map profile curvature (VW-DHM10) 

This parameter has a relatively strong influence on the result and leads to an 
improvement in the model performance. The integration of this parameter leads to a 
rise in susceptibility in concave areas. 

In order to study the influence of this parameter on model performance, VW-DHM10 
was excluded in run 17, whereas the other parameters corresponded to those of run 
10 (Tab. 7.2.2.1-1). It was shown that profile curvature led to a rise in sensibility in 
concave areas, which are often found on lower valley slopes. The validation 
comparison now showed that run 10 led to a better result than run 17 (Tab. A2 in 
Annex). The integration of profile curvature also led to an improvement in the model 
performance, and it is therefore an important parameter for modelling. 

 

Precipitation “level low” (NS_lg) 

 Comparison of the parameter maps precipitation –“level low“: 

- Precipitation “level low” as an independent parameter (NS_lg) 

- Precipitation “level low” integrated with subsurface flow disposition “level low” based 
on geological map “level low” and flow accumulation (QDisp_lg_GK_lg_fa_NS_lg)  

- Precipitation “level low” integrated with subsurface flow disposition “level low” based 
on geological map “level high” and flow accumulation (QDisp_lg_GK_lh_fa_NS_lg) 

- Precipitation “level low” integrated with subsurface flow disposition “level low” based 
on soil map and flow accumulation (QDisp_lg_BK_fa) 

As an independent parameter, precipitation “level low” has a strong influence on the 
modelling result and therefore produces major changes in map appearance, with a 
rise in susceptibility in areas of heavy precipitation and a decrease in susceptibility in 
areas with little precipitation. In integrated form, however, this parameter scarcely 
influences modelling results and usually results in only very slight changes in map 
appearance. Thus, the integration of precipitation “level low” as an independent 
parameter also leads to changes in validation, whereas validation usually does not 
change when precipitation is used as an integrated parameter. But in neither case 
was there a recognizable tendency toward improvement in model performance due 
to the integration of precipitation “level low.” 

Precipitation “level low” was included in the modelling both as an independent 
parameter and in integrated form as part of subsurface flow disposition (Tab. 6.2-1). 
In order to investigate the influence of NS_lg on the model performance, runs with 
the same parameter combination were compared, but with or without NS_lg. The 
parameter NS_lg was combined in both independent and integrated form with the 
subsurface flow dispositions QDisp_lg_GK_lg_fa (runs 20, 21 and 28), 
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QDisp_lg_GK_lh_fa (runs 23 und 22) and QDisp_lg_BK_fa (runs 34 und 25) 
respectively, whereas in the case of the independent parameter, this was done with 
the “level high” subsurface flow disposition QDisp_lh_fa_NS_lg (run 64) as well. 

Fig. 7.2.2.1-11 now shows the susceptibility map for run 23 as an example of results 
with NS_lg as an independent parameter. Conspicuous here are the higher 
susceptibilities in the centre of the study area, which are also located in the region of 
the higher precipitation “level low.” The neural network thus responds to the 
parameter NS_lg, and does so in the expected direction. 

 

Fig. 7.2.2.1-11: Susceptibility map of run 23 

 

This circumstance can be seen even more clearly in the difference map for runs 23 
and 24 (Fig. 7.2.2.1-12), even though NS_lg is rather weakly reflected in modelling. 
However, when comparing run 23 to other runs (for example to run 10), it was noted 
that the results in the validations were equally good (Tab. A2 in the Annex), whereas 
the difference maps often showed high values. That is an indication of shortcomings 
in the validation methods used.  

The sensitivity analysis of run 23 (Fig. 7.2.2.1-13) shows that NS_lg has little 
influence on the model result. 
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Fig. 7.2.2.1-12: Difference map of run 23 – run 14 

 

 

Fig. 7.2.2.1-13: Sensitivity analysis of run 23 

 

The validations of modelling with NS_lg as an independent parameter therefore 
produced no clear picture: in the validation comparison, the runs 20, 34 and 64, 
which were expanded with the parameter NS_lg, were (very) slightly worse than the 
corresponding runs 10, 33 and 46 without NS_lg. When comparing the runs 23 and 
14 (both containing QDisp_lg_GK_lh_fa) or runs 28 and 19 (both containing HK-
DHM10), the runs 23 and 28 containing NS_lg were (very slightly) better (Tab. A2 in 
Annex, parameters of runs: see Tab. 7.2.2.1-1). 
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Fig. 7.2.2.1-14 shows the difference map for the runs 21 and 10, which exemplifies 
the results that have NS_lg as an integrated parameter. The differences are very 
small, the parameter geology (Sub_GK_lg) tracing more strongly in the distribution of 
differences than the parameter precipitation (NS_lg). The small differences, as in the 
case of subsurface flow disposition can be attributed to the parameter 
QDisp_lg_GK_lg_fa_NS_lg that contains NS_lg, playing a quite moderate role in the 
result (Fig. 7.2.2.1-15) and NS_lg in turn making up only one part of this parameter.  

 

Fig. 7.2.2.1-14: Difference map of run 21 – run 10 

 

The sensitivity analysis of run 21 (Fig. 7.2.2.1-15) demonstrates that the parameter 
containing NS_lg, which is QDisp_lg_GK_lg_fa_NS_lg, is influencing the modelling 
result only in a moderate way and to the same degree as QDisp_lg_GK_lg_fa in run 
10 (Fig. 7.2.2.1-10). Hence the integration of NS_lg into the parameter 
QDisp_lg_GK_lg_fa_NS_lg did not result in any appreciable changes for this 
parameter. 
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Fig. 7.2.2.1-15: Sensitivity analysis of run 21 

 

In the validation comparison (Tab. A2 in Annex), two of the three runs studied (21 
and 25) that had NS_lg as an integrated parameter were assessed as just as good 
as the respective runs (10 and 25) without NS_lg. Only run 22 produced slightly 
better results than run 14. 

 

Forest and road network without land-use mapping 

Significance of the parameter maps forest and road network without land-use 
mapping (Wald_Sat_lg, Wegenetz_lg) 

Use of the parameter maps without land-use mapping (regionalisation data) results 
in a very strong deterioration in the model performance compared to parameter 
maps with mapped land-use. This applies particularly to the parameter forest. When 
forest is integrated without land-use mapping, the neural network can no longer 
recognize its stabilizing effect as clearly, and the parameter is no longer showing 
great influence on the modelling result. The mapping of land-use information 
(particularly forest and roads) is therefore enormously significant in the event 
documentation of mass movements.. 

The influence of regionalisation data (= forest and road network data without land-
use mapping (Wald_Sat_lg, Wegenetz_lg, see Chapter 6.1.2)) on the model 
performance was studied on the basis of runs 29 to 32 (Tab. 7.2.2.1-1). In order to 
do so, there was comparison of the runs with regionalisation data and the 
corresponding runs with the same parameter combination but with mapped land-use 
data (Wald_Sat_lg_mb, Wegenetz_lg_mb) (runs 2, 10 and 24). The runs 29 und 30 
included both parameters (Wald_Sat_lg, Wegenetz_lg), while the runs 31 and 32 
incorporated only the parameter Wald_Sat_lg. 

The susceptibility map for run 29 (Fig. 7.2.2.1-16) is an example of the runs done 
with regionalisation data. It has the same parameters as run 10, but includes 
Wald_Sat_lg and Wegenetz_lg. It shows higher susceptibilities in and lower 
susceptibilities outside forest than for run 10. The reason for this is that the neural 
network, due to the partially erroneous values in the regionalisation data, can no 
longer as clearly recognize the stabilizing effect of forest, and Wald_Sat_lg therefore 
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is no longer showing as great influence on the modelling result as Wald_Sat_lg_mb 
does in run 10. According the roads, however, there was an unexpected, slight 
increase in susceptibilities, which cannot be explained. 

 

Fig. 7.2.2.1-16: Susceptibility map of run 29 

 

The validation comparison (Tab. A2 in Annex) showed the clearest picture of  any 
obtained in this project: all of the runs (29 to 32) calculated with regionalisation data 
performed worse than the corresponding runs with mapped land-use (runs 2, 10 and 
24, cf. Fig. 7.2.2.1-17). In contrast to the use of regionalisation data, the use of 
parameters with mapped land-use greatly improved the model performance, 
particularly as regards the parameter forest (areas stabilized by tree roots). The 
mapping of land-use information (especially forest and roads) as part of event-
documentation of mass movements is therefore enormously important, particularly 
when the data is subsequently incorporated into susceptibility modelling. 
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Validation comparison of all “level low” runs and selection of the best “level low” runs 
with neural networks 

 Comparison of all “level low” parameter maps 

Generally speaking, major differences in the validation of runs occurred only with the 
inclusion of the parameters forest, road network, subsurface flow disposition, and 
profile curvature (and certainly also with the inclusion of slope, although this was not 
studied). In the case of all other parameters, the differences in validation results were 
quite small. This applied particularly to comparisons of variants of one parameter 
(forest, subsurface flow disposition and precipitation). The biggest differences in 
validation, and thus the biggest improvements in the model performance were 
achieved in the case of parameters with mapped land-use information, as opposed 
to parameters without mapped land-use information (= regionalisation data), and with 
inclusion of the parameter forest.  

This fact is apparent from a comparison of all runs with “level low” parameter maps 
according to the validation strategy developed by GBA (see Chapter 7.2.1 and Tab. 
A2 in Annex) and is also clearly seen in  the validation of the test data for  “level low” 
events according to Chung and Fabbri 1999 (Fig. 7.2.2.1-17). So there is essentially 
a broad array of run-curves in which only the runs with regionalisation data (the 
dashed lines for the runs 29, 30, 31 and 32) and run 13 (without the parameter 
forest) swerve downward. 

 

 

Fig. 7.2.2.1-17: Validation according to Chung & Fabbri (1999) of the test data of “low-level” runs  
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Based on the validation comparisons (see Tab. A2 in Annex), seven runs were 
assessed as equally good. From this group, the runs 10, 23 and 24 were selected as 
the “best 5 level low.” The remaining four runs were rejected due to their close 
similarity to other runs because of the parameters “integrated NS_lg” and 
Wald_dkm_lg_mb. The three runs selected all include the parameters 
Wald_Sat_lg_mb, VW-DHM10, HN-DHM10, Wegenetz_lg_mb and Sub_GK_lg, and 
differ only in having different subsurface flow dispositions (QDisp_lg_GK_lg_fa in run 
10, QDisp_lg_GK_lh_fa in run 23 and QDisp_lg_BK_fa in run 24, Tab 7.2.2.1-1). In 
addition, run 23 had NS_lg as an independent parameter, which was significant for 
the subsequent calculation of scenarios (cf. Chapter 11.1). Furthermore, runs 5 
(QDisp_lg_GK_lg_fa) and 6 (QDisp_lg_GK_lh_fa), which were only marginally 
worse, were included in the “best 5 level low.” They displayed the same parameters 
as the three best runs, however without Sub_GK_lg. Run 10, one of the best runs, 
showed in the test data an AUC for Chung & Fabbri 1999 of 91.34 and 91.68% for 
ROC, a recognition rate of 90.5%, and for the GBA validation method, a value of 
55.29. 

 

7.2.2.2 Modelling Results Using “Level High” Parameter Maps 

For modelling based on neural networks, the procedure for model integration of 
parameter maps described in Chapter 7.1 produced 33 model runs using parameter 
maps of the processing/quality grade “level high,” which are listed, including the 
respective parameter combinations, in Tab. 7.2.2.2.1. The parameter combinations 
of individual network runs do not necessarily correspond to the parameter 
combinations of runs with the other modelling methods used in the project (see 
Chapters 7.3, 7.4, and 7.5.). In modelling with neural networks, run 33 was selected 
as the best “level high” run (“best_lh”) after the first 13 “level high” runs (after run 
48_E), so that all subsequent “level high” runs were variations of the parameter 
combinations of run 33 (see Chapter 7.1).   
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Tab. 7.2.2.2.1_part 1: Model runs “level high” and the parameter maps used (abbreviation of parameter 

maps: Tab. 6.2.1) 

# Run Parameter maps used Relation to other Runs 

Run 33 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_BK_fa, BK 

as Run10, but using QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa and 
BK instead of Sub_GK_lg 

Run 34 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_BK_fa, BK, NS_LG 

as Run 10, but using QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa and 
BK instead of Sub_GK_lg and adding NS_LG; as Run 33, but adding 
NS_lg 

Run 35 Waldsat_lh_mb, VW-DHM10, 
HN-DHM10 

as Run 2, but using Waldsat_lh_mb instead of Waldsat_lg_mb; as Run 
31, but using Waldsat_lh_mb instead of Waldsat_lg_mb 

Run 36 Waldsat_lh_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, 
Sub_GK_lg 

as Run 10, but using Waldsat_lh_mb instead of Waldsat_lg_mb; as Run 
32, but using Waldsat_lh_mb instead of Waldsat_lg_mb 

Run 37 = 

Run 39 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lh_mb 

as Run 3, but using Wegenetz_lh_mb instead of Wegenetz_lg_mb 

Run 38 = 

Run 3 

 
 

Run 40 = 

Run 42 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa 

as Run 5, but using QDisp_lh_fa instead of QDisp_lg_GK_lg_fa 

Run 41 = 

Run 5 

 
 

Run 43 

 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, 
Sub_GK_lh 

as Run10, but using Sub_GK_lh instead of Sub_GK_lg 

Run 44 = 

Run 10 

 
 

Run 45 = 

Run 43 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, 
SUB_GK_LH 

as Run10, but using Sub_GK_lh instead of Sub_GK_lg 

Run 46 = 

Run 48 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa, BK 

as Run 33, but using QDisp_lh_fa instead of QDisp_lg_BK_fa 

Run 47 = 

Run 33 
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Tab. 7.2.2.2-1_part 2: Model runs “level high” and the parameter maps used (abbreviation of parameter 

maps: Tab. 6.2.1) 

Run 

48_A 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lh_fa, 
Sub_GK_lh 

as Run10, but using QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa 
and Sub_GK_lh instead of SUB_GK_lg; as Run 14, but using  Sub_GK_lh 
instead of Sub_GK_lg, as Run 6 adding Sub_GK_lh, as Run 27 – HK-
DHM10 

Run 

48_B 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa, Sub_GK_lh 

as Run10, but using QDisp_lh_fa instead of QDisp_lg_GK_lg_fa and 
Sub_GK_lh instead of Sub_GK_lg; as Run 40 adding  Sub_GK_lh, as  
Run 46, but using  Sub_GK_lh instead of BK 

Run 

48_C 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_BK_fa, Sub_GK_lh 

as Run10, but using QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa and 
Sub_GK_lh instead of Sub_GK_lg; as Run 33, but using  Sub_GK_lh 
instead of BK, as  Run 24, but using  Sub_GK_lh instead of Sub_GK_lg; 
as  Run 43, but using QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa 

Run 

48_D 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lh_fa, BK 

as Run10, but using QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa 
and BK instead of Sub_GK_lg; as Run 33, but using QDisp_lg_GK_lh_fa 
instead of QDisp_lg_BK_fa, as Run 6 adding BK, as Run 14, but using 
BK instead of Sub_GK_lg 

Run 48_E Waldsat_lh_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lh_mb, 
QDisp_lg_GK_lh_fa, BK 

as Run10, but using QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa 
and BK instead of Sub_GK_lg and Waldsat_lh_mb instead of 
Waldsat_lg_mb; as Run 48_D, but using Wegenetz_lh instead of 
Wegenetz_lg, as Run 48_A, but using Wegenetz_lh instead of 
Wegenetz_lg and BK instead of Sub_GK_lh 

Run 53 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lh_mb, 
QDisp_lg_BK_fa, BK 

as Run10, but using QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa, BK 
instead of Sub_GK_lg, Wegenetz_lh_mb instead of Wegenetz_lg_mb; as 
Run 33 but using Wegenetz_lh_mb instead of Wegenetz_lg_mb 

Run 55 Waldsat_lg_mb, HK-DHM10, 
VW-DHM10, HN-DHM10, 
Wegenetz_lh_mb, 
QDisp_lg_BK_fa, BK 

as Run10, but using QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa, BK 
instead of Sub_GK_lg, adding HK-DHM10; Run 33 adding HK-DHM10 

Run 56 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, BK 

as Run10, but using BK instead of Sub_GK_lg, as Run 33, but using 
QDisp_lg_GK_lg_fa instead of QDisp_lg_BK_fa, as Run 46, but using 
QDisp_lg_GK_lg_fa instead of QDisp_lh_fa; as Run 48_D, but using 
QDisp_lg_GK_lg_fa instead of QDisp_lg_GK_lh_fa 

Run 57 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_BK_fa, BK 

as Run10, but using Flowaccumulation instead of QDisp_lg_GK_lg_fa 
and BK instead of Sub_GK_lg, as Run 33, but using Flowaccumulation 
instead of QDisp_lg_BK_fa 

Run  58 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_BK_fa, NS_lh, BK 

as Run10, but using NS_lh, QDisp_lg_BK_fa instead of 
QDisp_lg_GK_lg_fa and BK instead of Sub_GK_lg, Run 33 adding NS_lh, 
as Run 34, but using NS_lh instead of NS_lg 

Run 59 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa, 
Sub_GK_lg, NS_lh 

 as Run10, but using NS_lh; as Run 20, but using NS_lh instead of NS_lg 

Run 60 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lh_fa_NS_lh, 
BK 

as Run10, but using QDisp_lg_GK_lh_fa_NS_lh instead of 
QDisp_lg_GK_lg_fa and BK instead of Sub_GK_lg, as Run 33, but using 
QDisp_lg_GK_lh_fa_NS_lh instead of QDisp_lg_BK_fa; as Run 48_D, but 
using QDisp_lg_GK_lh_fa_NS_lh instead of QDisp_lg_GK_lh_fa 

Run 61 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lg_fa_NS_lh, 
Sub_GK_lg 

as Run10, but using QDisp_lg_GK_lg_fa_NS_lh instead of 
QDisp_lg_GK_lg_fa, as Run 21, but using QDisp_lg_GK_lg_fa_NS_lh 
instead of QDISP_lg_GK_lg_fa_NS_lg 

Run 62 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lh_fa_NS_lh, 
Sub_GK_lg 

as Run10, but using QDisp_lg_GK_lh_fa_NS_lh instead of 
QDisp_lg_GK_lg_fa, as Run 22, but using QDisp_lg_GK_lh_fa_NS_lh 
instead of QDisp_lg_GK lh_fa_NS_lg, as Run 61, but using 
QDisp_lg_GK_lh_fa_NS_lh instead of QDisp_lg_GK_lg_fa_NS_lh 
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Tab. 7.2.2.2-1_part 3: Model runs “level high” and the parameter maps used (abbreviation of parameter 

maps: Tab. 6.2-1) 

 Run 63 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa_NS_lh, BK 

as Run 10, but using QDisp_lh_fa_NS_lh instead of QDisp_lg_GK_lg_fa 
and BK instead of Sub_GK_lg, as Run 33, but using QDisp_lh_fa_NS_lh 
instead of QDisp_lg_BK_fa, as Run 46, but using QDisp_lh_fa_NS_lh 
instead of QDisp_lh_fa 

Run 64 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa, BK, NS_lg 

as Run10, but using QDisp_lh_fa instead of QDisp_lg_GK_lg_fa and BK 
instead of Sub_GK_lg adding NS_lg; as Run 33, but using QDisp_lh_fa 
instead of QDisp_lg_BK_fa adding NS_lg; as  Run 46 adding NS_lg 

Run 65 = 
Run 66 

Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa, BK, NS_lh 

as Run10, but using QDisp_lh_fa instead of QDisp_lg_GK_lg_fa and BK 
instead of Sub_GK_lg adding NS_lh; as Run 33, but using QDisp_lh_fa 
instead of QDisp_lg_BK_fa adding NS_lh; Run 46 adding NS_lh; as Run 
63, but using QDisp_lh_fa + NS_lh instead of QDisp_lh_fa_NS_lh; as 
Run 64, but using NS_lh instead of NS_lg 

Run 68 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_BK_fa_NS_lh, BK 

as Run10, but using QDisp_lg_BK_fa_NS_lh instead of 
QDisp_lg_GK_lg_fa and BK instead of Sub_GK_lg, as Run 33, but using 
QDisp_lg_BK_fa_NS_lh instead of QDisp_lg_BK_fa, as Run 58, but using 
QDisp_lg_BK_fa_NS_lh instead of QDisp_lg_BK_fa adding NS_lh 

Run 69  Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lh_mb, 
HK-DHM10, QDisp_lh_fa, 
Sub_GK_lh 

as Run 27, but using QDisp_lh_fa instead of QDisp_lg_GK_lh_fa and 
Wegenetz_lh_mb, instead of Wegenetz_lg_mb, 

Run 70  Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lh_mb, 
HK-DHM10, 
QDisp_lh_fa_NS_lh, 
Sub_GK_lh 

as Run 69, but using  QDisp_lh_fa_NS_lh instead of QDisp_lh_fa; as Run 
28 but using Wegenetz_lh_mb instead of  Wegenetz_lg_mb and 
QDisp_lh_fa_NS_lh instead of Sub_GK_lh and QDisp_lg_GK_lh_fa 

Run 71 Waldsat_lg, VW-DHM10, HN-
DHM10, Wegenetz_lg, 
QDisp_lg_BK_fa, NS_lh, BK 

as Run 58, but using Waldsat_lg instead of Waldsat_lg_mb, Wegenetz_lg 
instead of Wegenetz_lg_mb; as Run10, but using NS_lh, 
QDisp_lg_BK_fa instead of QDisp_lg_GK_lg_fa, BK instead of 
Sub_GK_lg, Waldsat_lg instead of Waldsat_lg_mb and Wegenetz_lg 
instead of Wegenetz_lg_mb 

Run 72 Waldsat_lg, VW-DHM10, HN-
DHM10, Wegenetz_lg, 
QDisp_lg_BK_fa, BK 

as Run 33, but using Waldsat_lg instead of Waldsat_lg_mb, Wegenetz_lg 
instead of Wegenetz_lg_mb; as Run10, but using QDisp_lg_BK_fa 
instead of QDisp_lg_GK_lg_fa, BK instead of Sub_GK_lg, Waldsat_lg 
instead of Waldsat_lg_mb and Wegenetz_lg instead of Wegenetz_lg_mb; 
as Run 30, but using BK instead of Sub_GK_lg, as  Run 71 without NS_lh 

Run 73 Waldsat_lg, VW-DHM10, HN-
DHM10, Wegenetz_lg, 
QDisp_lg_GK_lh_fa, 
Sub_GK_lh, NS_lh 

as  Run P2, but using Waldsat_lg instead of Waldsat_lg_mb, 
Wegenetz_lg instead of Wegenetz_lg_mb; as Run10, but using 
QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa, Sub_GK_lh instead 
of Sub_GK_lg, NS_lh, Waldsat_lg instead of Waldsat_lg_mb and 
Wegenetz_lg instead of Wegenetz_lg_mb  

Run P1 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lh_fa, Sub_GK_lg 

as Run 10, but using QDisp_lh_fa instead of QDisp_lg_GK_lg_fa 

Run P2 Waldsat_lg_mb, VW-DHM10, 
HN-DHM10, Wegenetz_lg_mb, 
QDisp_lg_GK_lh_fa, 
Sub_GK_lh, NS_lh 

as Run10, but using QDisp_lg_GK_lh_fa instead of QDisp_lg_GK_lg_fa, 
Sub_GK_lh instead of Sub_GK_lg, adding NS_lh; as Run 48_A adding 
NS_lh 

 
 

 

The following discussion is presenting the results of the model runs performed using 
“level high” parameter maps. The results are analysed in a manner analogous to the 
“low level” runs (Chapter 7.2.2.1.) and compared -- summarized by parameter map -- 
on the basis of the validation strategy presented in 7.2.1. 
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Basic disposition based on soil map (BK) 

 Significance of the parameter map basic disposition based on soil map (BK): 

The integration of this parameter resulted in a very mild deterioration in model 
performance. This is also the case compared to the parameter map geological basic 
disposition “level low,” whereas compared to the parameter map geological basic 
disposition “level high,” there was a slight improvement in the model performance. 
The influence of this parameter on the result is moderate and thus clearly greater 
than that of the geological basic dispositions “level low” and “level high. The 
parameter is influencing the result in the expeted direction, which is shown in higher 
susceptibilities in the regions of higher basic disposition based on the soil map. 

In run 33, this parameter was included in the modelling together with subsurface flow 
disposition “level low” based on the soil map and flow accumulation 
(QDisp_lg_BK_fa), in addition to the parameters from run 3. In order to investigate 
the influence of this parameter on the model performance, the results of runs 48_D 
and 6 were compared, with run 48_D having the same parameter combination as run 
6, but also containing the parameter map BK. A comparison was made to the 
parameter Sub_GK_lg through juxtaposition of runs 33 and 24, 56 and 10, 48_D and 
14, and finally 46 and P1. There was a comparison to the parameter Sub_GK_lh 
through juxtaposition of the runs 46 and 48_B and 33 and 48_C (for the parameter 
combinations of the runs, Tab. 7.2.2.1-1 and 7.2.2.2-1). 

It was shown that in all runs, the parameter BK influenced results in the expected 
direction. There were lower susceptibilities in areas with lower basic disposition 
based on the soil map, whereas higher susceptibilities occurred in areas of higher 
basic disposition. As the sensitivity analysis of run 33 shows (Fig. 7.2.2.2-1), the 
influence of this parameter on the result can generally be termed moderate, however 
it is still obviously greater than that of Sub_GK_lg (Fig. 7.2.2.1-10) and Sub_GK_lh. 

 

 

Fig. 7.2.2.2-1: Sensitivity analysis of run 33 

 

The validation comparison of the runs 48_D and 6 (Tab. A2 in Annex) showed that 
the integration of this parameter into the modelling leads to a very slight deterioration 
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in model performance. Compared to the parameter Sub_GK_lg, consideration of this 
parameter, despite the strong influence on the result, also lead to a (very) slight 
deterioration in model performance, whereas compared to the parameter map 
Sub_GK_lh, there was a slight improvement in model performance. 

 

Geological basic disposition “level low” (Sub_GK_lg) 

 Significance of the parameter map geological basic disposition “level low” based 
on the conceptual soil map (Sub_GK_lg): 

Compared to the parameters geological basic disposition “level high” and basic 
disposition based on the soil map, this parameter led to a mild improvement in model 
performance (see above and below). This is remarkable, because its influence on 
modelling is weak and acts in the “opposite” direction than expected, whereas the 
two other parameters have a moderate influence on modelling in the expected 
direction. 

This parameter had already been included in modelling in the “level low” runs 
(Chapter 7.2.2.1), however it is also included here, in the “level high” parameter 
maps, due to the comparisons to Sub_GK_lg and BK. Based on the comparison of 
the runs P1 to run 40, the integration of Sub_GK_lg in modelling, compared to the 
non-inclusion of this parameter, can also be analysed at “level high.” Here too, it was 
shown, analogously to the “level low” runs, that the integration of Sub_GK_lg 
resulted in a slight improvement in model performance, even though the parameter 
had only a weak influence and in the “opposite” direction than expected on the 
modelling. 

The comparisons to the two other basic disposition maps BK and Sub_GK_lh will be 
explained in more detail on the respective parameter maps. However, it was shown 
that Sub_GK_lg, compared to Sub_GK_lh, led to a slight improvement in the model 
performance, and that compared to BK, a tendency was seen toward a very slight 
improvement in the model performance (Tab. A2 in Annex). That is quite remarkable, 
because Sub_GK_lg shows a weak influence on the model result and acts in the 
“opposite direction,” whereas the two other parameters have a moderate influence, 
and in the expected direction in modelling. 

 

Geological basic disposition  “level high” (Sub_GK_lh) 

 Significance of the parameter map geological basic disposition “level high” based 
on conceptual soil map (Sub_GK_lh): 

Integration of this parameter does not result in any clear tendency toward 
improvement in the model performance. However, it was seen, when compared to 
both the “level low” map and the basic disposition based on soil map, that this 
parameter led to a slight deterioration in the model performance. That was 
remarkable, because the “level high” map has a stronger influence on modelling 
compared to the “level low” map, and in contrast to the “level low” map, it influences 
modelling in the expected direction.  

This parameter was included in modelling in run 43, in addition to the parameters 
from run 5. In order to study the influence of this parameter on model performance, 
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there was a comparison of the results of the runs 43 and 5, and also those of runs 
48_A and 6, and those of 48_B and 40. Here, the first of the runs compared has in 
each case the same parameter combination as the second run, however with the 
addition of the parameter Sub_GK_lh (Tab. 7.2.2.2-1). In order to compare the two 
parameter maps Sub_GK_lh and Sub_GK_lg, the runs 43, 48_A, 48_C and 48_B 
were juxtaposed to the runs 10, 14, 24 und P1 respectively, the former group 
containing “level high” maps and the latter “level low” maps (Tab. 7.2.2.1-1). The 
comparison to parameter BK was then made via the runs 48_B and 46, and 48_C 
and 33 (see BK).  

The difference map for run 43 compared to run 5 (Fig. 7.2.2.2-2) now shows that the 
“level high” parameter map Sub_GK_lh, in contrast to the “level low” parameter map 
Sub_GK_lg (Chapter 7.2.2.1), influences modelling in the expected direction. Thus, 
in run 43, higher susceptibilities (blue) occur in the region of higher geological basic 
disposition (generally black shale, green shale), whereas lower susceptibilities (red) 
occur in the areas that are classified as less landslide-prone (generally phyllitic mica 
schist). The sensitivity analysis of run 43 (Fig. 7.2.2.2-3) shows that the parameter 
Sub_GK_lh has a moderate influence on the model result. The influence of this 
parameter is therefore obviously stronger than that of Sub_GK_lg (Fig. 7.2.2.1-10), 
however it is also weaker than that of BK (Fig. 7.2.2.2-1). 

 

Fig. 7.2.2.2-2: Difference map of run 43 - 5 
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Fig. 7.2.2.2-3: Sensitivity analysis of run 43 

 

The validation comparisons (Tab. A2 in Annex) concerning integration of the 
parameter map Sub_GK_lh into modelling now show no unequivocal picture. 
Whereas in runs 43 and 48_A, there is a slight deterioration in the model 
performance due to the inclusion of Sub_GK_lh, in run 48_B, the inclusion of this 
parameter produces a very slight improvement. On the other hand, the validation 
comparisons relating to Sub_GK_lg and BK present a very clear picture: in all four 
comparisons to the “level low” parameter map, as well as in the two comparisons to 
basic disposition based on the soil map (see BK), use of the “level high” parameter 
maps leads to a slight deterioration in the model performance. 

This demonstrates that none of the attempts to integrate more realistic or process-
oriented basic disposition maps of the geosphere into models led to improvement in 
the model performance. However, this does not necessarily mean that the geological 
basic disposition map “level high,” for example, is not more realistic and more 
process-oriented than the “level low” map, because it should be kept in mind that 
model performance is ultimately measured by the validation method/strategy used. 
The somewhat poorer validation results obtained through integration of the 
parameter map Sub_GK_lh might also be due to the validation methods employed 
simply not being able to depict the improvements the map produced, because the 
methods used are always area-wide and thus incapable of detecting partial 
improvements (cf. Chapter 7.1). This deficit highlights the need for new, partial 
validation methods. Furthermore, it is also conceivable that the improvement in 
Sub_GK_lh simply cannot be detected by the model, because the available data 
(other parameter maps and process data) is not of sufficient quality to reproduce the 
complex events in nature on a 1:1 basis. 
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 Comparison of all “geosphere” parameter maps 

- geological basic disposition “level low” based on conceptual soil map “level 
low”(Sub_GK_lg): 

- geological basic disposition “level high” based on conceptual soil map “level high” 
(Sub_GK_lh): 

- Basic disposition based on soil map (BK): 

In the case of these three parameters, only integration of the “level low” map leads to 
a slight improvement in model performance. However, this parameter map influences 
modelling in the “opposite” direction than expated. This means that there is a 
decrease in susceptibility in areas with higher geological basic disposition. However, 
the other two parameter maps influence modelling in the expected direction. The 
strongest influence on the result is seen in the basic disposition based on the soil 
map, followed by the “level high” parameter map, and then by the “level low” 
parameter map, which has only a very weak influence. The first two have a moderate 
influence on the result.  

Compared to the other two parameter maps, the “level low” parameter map, despite 
its weak influence in the “opposite” direction, leads to a slight improvement in the 
model performance. When comparing the other two maps, the “level high” parameter 
map shows poorer model performance.  

However, this does not necessarily mean that the geological basic disposition map 
“level high” is less realistic or process-oriented than the “level low” map. The poorer 
model performance measured by the validation methods described might in fact be 
attributable to the inadequacy of the area-wide validation methods used, which in 
turn highlights the necessity of developing a new, partial validation method. 
Furthermore, it might actually be impossible to adequately depict the total complexity 
of nature. 

 

Subsurface flow disposition “level low” & “level high” 

 Comparison of the parameter maps subsurface flow disposition “level low” & 
“level high”: 

- Subsurface flow disposition “level low” based on the geological map “level low” and 
flow accumulation (QDisp_lg_GK_lg_fa) 

- Subsurface flow disposition “level low” based on the geological map “level high” and 
flow accumulation (QDisp_lg_GK_lh_fa) 

- Subsurface flow disposition “level low” based on soil map and flow accumulation 
(QDisp_lg_BK_fa) 

- Subsurface flow disposition “level high” based on field mapping and flow 
accumulation (QDisp_lh_fa) 

The influence of these four “subsurface flow disposition” parameter maps on results 
is largely moderate and thus similarly high. In addition, the susceptibility maps 
produced using these parameter maps usually display only slight differences (with 
the exception of some results for subsurface flow disposition “level high” based on 
field mapping). The validation results for these four parameter maps are also very 
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similar, those for subsurface flow disposition “level low” based on soil map being 
slightly better, and those for subsurface flow disposition “level low” based on the 
geological map “level high” being slightly poorer than those for the other subsurface 
flow disposition maps. 

The great similarity in results and model performance was already noted in the “level 
low” analyses and can be attributed to subsurface flow disposition usually showing 
only a moderate influence in the result, and the substituted parameter map 
“geosphere” in turn being only one of several components used in producing the 
parameter maps “subsurface flow disposition.”  

It was therefore seen that both “level high” variants (both the variant with mapped 
subsurface flow disposition and the variant with geological basic disposition “level 
high”) in comparison to the level low variants, did not lead to improvement in the 
model performance. But in this context as well, it should also be investigated whether 
the cause for this might be the area-wide validation methods used (see comparison 
of all “geosphere” parameter maps). 

In the following discussion of “level high” runs, only the results of the parameter map 
“field mapping and flow accumulation” (QDisp_lh_fa)“ will be discussed in detail. As 
the three parameter maps QDisp_lg_GK_lg_fa, QDisp_lg_GK_lh_fa and 
QDisp_lg_BK_fa were analysed in detail in discussion of the “level low” runs 
(Chapter 7.2.2.1), there will be only summary discussion of the significance of these 
parameter maps for the model result. 

 

Subsurface flow disposition “level low” based on the geological map “level low” and 
flow accumulation (QDisp_lg_GK_lg_fa) 

In the validation comparison of the runs with this parameter (56 and 61) to the runs 
with the parameter QDisp_lg_GK_lh_fa (48_D and 62), model performance 
remained equally good. Compared to the runs with QDisp_lg_BK_fa (24, 48_C and 
33), the results of runs with this parameter (10, 43 and 56) ranged from equally good 
to somewhat poorer (for run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-1). Compared to 
the runs with the mapped subsurface flow disposition QDisp_lh_fa (40, 46 and P1), 
there was actually a tendency toward a slightly better model performance in the runs 
with this parameter (runs 5, 10 and 56). Here too, it was shown that this parameter 
had only a moderate influence on the result and its sensitivity, and that the maps of 
results usually differed little from those of the other subsurface flow disposition 
parameters. Somewhat larger differences in map appearance were seen only in 
comparisons with maps produced using the parameter QDisp_lh_fa. The validations 
and influences of this parameter are therefore, in general, quite similar to those of 
the other subsurface flow disposition parameters (significant differences appeared 
only to a limited extent in the comparison to QDisp_lh_fa), so it is impossible to make 
any clear statement on the influence of this parameter on the model performance. 

 

Subsurface flow disposition “level low” based on geological map “level high” and flow 
accumulation (QDisp_lg_GK_lh_fa) 

The validation comparisons of the runs with this parameter to the runs with 
QDisp_lg_GK_lg_fa show the same model performance (see QDisp_lg_GK_lg_fa). 
On the other hand, compared to the runs with QDisp_lg_BK_fa (33) and QDisp_lh_fa 
(P1), the runs with this parameter (48_D or 14) show a slight deterioration in model 
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performance (for run parameters, see Tab. 7.2.2.1.-1 and 7.2.2.2-1). Thus, 
compared to the other runoff parameters, this parameter tends to produce a slight 
deterioration in model performance. In the case of this parameter as well, sensitivity 
and map appearance for the result usually differ little from those of the other 
subsurface flow disposition parameters, the exception being the difference map for 
the result with QDisp_lh_fa. 

 

Subsurface flow disposition “level low” based on soil map and flow accumulation 
(QDisp_lg_BK_fa) 

The validation comparisons of the runs with this parameter to the results for the runs 
with the other subsurface flow disposition parameters tended to show a slight to very 
slight improvement in model performance based on this parameter. This also applies 
to the validation comparisons with QDisp_lh_fa, where model performance, after the 
integration of QDisp_lg_BK_fa, is slightly better in one case (run 33 and 46) and 
equally good in another (run 24 and P1) (run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-
1). On the other hand, sensitivities and suscepitibity maps are usually similar to 
those of the other subsurface flow disposition parameters, whereas compared to 
QDisp_lh_fa there are greater differences in the susceptibility maps (run 46 and 33). 

 

Subsurface flow disposition “level high” based on field mapping and flow 
accumulation (QDisp_lh_fa) 

This parameter was included in modelling in run 40, in addition to the parameters 
from run 3. Therefore, in order to study the influence of this parameter on model 
performance, these two runs were compared. The comparison to 
QDisp_lg_GK_lg_fa was performed by juxtaposing the runs 40 and 5, 46 and 56, 
and P1 and 10; the comparison to QDisp_lg_GK_lh_fa by juxtaposing runs P1 and 
14, and the comparison to BK by juxtaposing the runs 46 and 33 and P1 and 24 (for 
run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-1). 

It was shown that the influence of this parameter on the result was moderate, as it 
was in the case of the other subsurface flow disposition variants. Only in run 46 there 
was actually a stronger influence. It was noted that some of the susceptibility maps 
produced using this parameter showed greater deviations compared to those using 
the other subsurface flow disposition parameters than the others did among 
themselves. This applied to the difference maps for the runs 40 compared to 5, P1 
compared to 14, 46 to 56, and 46 to 33. 

With integration of this parameter into the modelling, there was a slight improvement 
in the model performance (see Tab. A2 in Annex). However, compared to the runs 
with QDisp_lg_GK_lg_fa and BK, there was a very slight deterioration in the model 
performance with this parameter, whereas compared to QDisp_lg_GK_lh_fa, there 
was a slight improvement. On the whole, therefore, no definite statement can be 
made on the influence of this parameter on model performance compared to the 
other subsurface flow disposition parameters. 
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Forest “level high” based on satellite data 

Significance of the parameter map forest “level high” based on satellite data 
(Wald_Sat_lh): 
This parameter map is just as influential in modelling as the “level low” satellite data 
forest map without mapped forest distribution, however its influence is obviously 
weaker than the “level low” satellite data forest map with mapped forest distribution. 
Integrating this parameter into modelling improved the model performance. However, 
compared to the “level low” satellite data forest map without mapped forest 
distribution (and this is the decisive comparison), there was a slight deterioration in 
model performance, and compared to the “level low” satellite data forest map with 
mapped forest distribution, there was an obvious deterioration in model performance. 
On the whole, therefore, the forest map “level high” did not contribute to an 
improvement, but rather to deterioration in the model performance. 

This parameter was included in modelling in run 35. In order to study the influence of 
this parameter on the model performance, run 36 was compared to run 13 (which 
has the same parameters as run 36, but without forest). A comparison to the 
previously used forest map Wald_Sat_lg_mb was made with run 35 by means of run 
2, which contains the same parameters as run 35, however instead of Wald_sat_lh, 
run 2 contains the mapped forest distribution Wald_Sat_lg_mb. However, because 
the parameter Wald_Sat_lh contains no mapped forest distribution, it can only be 
compared on an equal basis with the parameter Wald_Sat_lg, which also contains 
no mapped forest distribution. This was done through the comparison with run 31 (for 
run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-1). 

The sensitivity analysis of run 35 showed that Wald_sat_lh had an influence on the  
result that was approximately equal to that of the other forest map without mapped 
forest distribution (Wald_sat_lg), but that it was definitely weaker than that of the 
forest map with mapped forest distribution (Wald_Sat_lg_mb. When comparing the 
susceptibility maps for the runs 2 and 35 (analogous to run 31), this lead in run 35 to 
a rise in susceptibility in forest and a decrease in susceptibility outside forest. 
Furthermore, the difference map for runs 35 and 31 also showed somewhat higher 
susceptibilities outside forest in run 31, whereas in forest, there could be great 
variation in the differences. The dichotomous variable Wald_sat_lg thus produces 
stronger differentiation between forest/non-forest than the polytomous variable 
Wald_sat_lh, whereas inside the forest, only the latter can, by the nature of things, 
produce differention. 

The validation comparisons (Tab. A2 in Annex) now showed that the integration of 
this parameter, compared to non-consideration of this parameter, clearly improved 
model performance. However, compared to Wald_Sat_lg_mb, model performance 
strongly deteriorated. The most significant comparison, however, is that to 
Wald_Sat_lg, and even here there was also a slight deterioration in the result of 
Wald_sat_lh. The forest map “level high” thus made no contribution to improving the 
model performance (resulting rather in deterioration). Because the influence of this 
parameter also decreased, it should probably not be assumed that there would be 
noticeable improvement with the use of a different, partial validation method (see 
comparison of the parameter maps basic disposition of the geosphere). 
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Influence area of road network “level high” based on DCM, aerial photography and 
field mapping 

Significance of the parameter map  “level high” (Wegenetz_lh_mb) 

The integration of this parameter leads to a slight improvement in model 
performance, however compared to road network “level low,” there is also 
deterioration of varying degrees in model performance. This parameter also has a 
weaker influence on modelling than the “level low” variant. The reason for this is that 
through enlargement of the surface by coding “influence area yes,” the correlation 
between this parameter and the mass movement distribution is definitely weakened. 

This parameter was included in modelling in run 37, in addition to the parameters 
from run 2. The change caused by the integration of this parameter could be studied 
from the comparison of these two runs. Comparisons to the parameter road network 
“level low” were performed by juxtaposing the runs 37 and 3, 48_E and 48_D, and 53 
and 33 (for run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-1). 

As the sensitivity analysis of run 37 (Fig. 7.2.2.2-4) now shows, in a manner 
representative of the runs with this parameter, Wegenetz_lh_mb has only a 
moderate and therefore decidedly weaker influence than Wegenetz_lg_mb on 
modelling. 

 

 

Fig. 7.2.2.2-4: Sensitivity analysis of run 37 

 

The difference map of runs 37 and 3 (Fig. 7.2.2.2-5) shows that in the case of those 
roads that are included in both road system maps (Wegenetz_lh_mb and 
Wegenetz_lg_mb, roads visible on the diagram), run 3 shows higher susceptibilities 
(red), while in the roads that appear only in Wegenetz_lh_mb, run 37 produces 
higher susceptibilities (blue). This proves that Wegenetz_lg_mb is more influential in 
modelling than Wegenetz_lh_mb, but that Wegenetz_lh_mb nevertheless has an 
influence on the susceptibility map. The fact that Wegenetz_lh_mb has a weaker 
influence is attributed to the area with the coding “influence area yes” being much 
larger here than in Wegenetz_lg_mb, even though this does not result in an increase 
in the number of mass movements lying within the influence area of the roads 
(because attributation is done according to land-use coding). However, this also 
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weakens the correlation between mass movement distribution and the influence area 
of roads. 

 

Fig. 7.2.2.2-5: Difference map of run 37 - 3 

 

A comparison of the validations (Tab. A2 in Annex) now showed that integration of 
this parameter did lead to a slight improvement in the model performance, but that in 
all three cases, compared to Wegenetz_lg_mb, there was a deterioration (of varying 
intensity) in model performance. Completion of the road network by means of 
satellite image analysis did not improve model performance either, rather the 
opposite. Because this also diminished the influence of this parameter, it seems 
unlikely that improvements would be seen if it were used with another, partial 
validation method (see comparison of parameter maps basic disposition of the 
geosphere). 

 

Curvature classification 

 Significance of the parameter map curvature classification (HK-DHM10) 

This parameter always results in a (mild) deterioration in model performance. 

Because this parameter has been studied in connection with the “level low” runs, it 
will not be discussed in detail here. In order to study changes in model performance 
resulting from this parameter, the runs 55 and 33 and 27 and 48A were compared in 
the “level high” analyses (for run parameters, Tab 7.2.2.1-1 and 7.2.2.2-1). It was 
seen here, as in the “level low” runs, that the integration of this parameter always 
resulted in a (slight) deterioration in model performance (Tab. A2 in Annex). Here 
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too, in the sensitivity analysis, the class 0 (= dell: horizontal and vertical concave) 
had the greatest influence on the result, although this was not visible in the 
difference map. 

 

Precipitation “level high” (NS_lh) 

 Comparison of the parameter maps precipitation – “level high”: 

- Precipitation “level high” as an independent parameter (NS_lh) 

- Precipitation “level high” integrated into subsurface flow disposition “level low” 
based on the geological map “level low” and flow accumulation 
(QDisp_lg_GK_lg_fa_NS_lh)  

- Precipitation “level high” integrated into subsurface flow disposition “level low” 
based on the geological map “level high” and flow accumulation 
(QDisp_lg_GK_lh_fa_NS_lh) 

- Precipitation “level high” integrated into subsurface flow disposition “level low” 
based on soil map and flow accumulation (QDisp_lg_BK_fa_NS_lh) 

- Precipitation “level high” integrated into subsurface flow disposition “level high” 
based on field mapping and flow accumulation (QDisp_lh_fa_NS_lh) 

As an independent parameter, precipitation “level high” has a strong influence on 
modelling and therefore causes major changes in the susceptibility map, with a rise 
in susceptibility in areas of high precipitation and a decrease in susceptibility in areas 
of low precipitation. Here, the influence of precipitation “level high” on the result is 
clearly even greater than at precipitation “level low,” which results in mild 
improvement in model performance compared to the “level low” results.  

In integrated form, however, this parameter has hardly any influence on modelling 
and usually causes only very slight changes in the susceptibility map. However no 
tendency toward improvement in model performance through integration of 
precipitation “level high” could be seen compared to non-consideration of this 
parameter (analogue to “level low”), neither in independent nor in integrated form. 

Precipitation “level high” was included in modelling in both independent and 
integrated form. In both cases, it was combined with the subsurface flow dispositions 
QDisp_lg_GK_lg_fa (runs 59 and 61), QDisp_lg_GK_lh_fa (runs 60, 62 and P2), 
QDisp_lg_BK_fa (runs 58 and 68) and QDisp_lh_fa (runs 63 and 65) respectively 
(Chapter 5.4; for run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-1).  

Fig. 7.2.2.2-6 now shows the susceptibility map from run 58 as an example of results 
with NS_lh as an independent parameter. There are noticeably higher 
susceptibilities extending from the centre to the southeast of the area, which is the 
region of high precipitation “level high.” As before with “level low,” the neural network 
reacts to the parameter NS_lh, and in the expected direction. This can be seen even 
more clearly in the difference map for runs 58 and 33 (Fig. 7.2.2.2-7). That map also 
clearly demonstrates that strong differences occur, from which it can be concluded 
that NS_lh is a strong factor in modelling. 
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Fig. 7.2.2.2-6: Susceptibility map of run 58 

 

 

Fig. 7.2.2.2-7: Difference map of run 58 – run 33 
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The sensitivity analysis of network 58 (Fig. 7.2.2.2-8) shows that precipitation “level 
high,” as previously assumed, has actually a strong influence on the modelling result 
(equal to that of the road network), and that it obviously plays a bigger role than 
precipitation “level low” (Fig. 7.2.2.1-13). 

 

 

Fig. 7.2.2.2-8: Sensitivity analysis of run 58 

 

In order to investigate the influence of NS_lh as an independent parameter on model 
performance, there was a comparison of runs with the same parameter combination, 
but with NS_lh (runs 58, 59, 65 and P2) and without NS_lh (runs 33, 10, 46 and 
48_A). The comparisons of NS_lh to NS_lg were performed by juxtaposing runs 58 
and 34, 59 and 20, and 65 and 64 (for run parameters, Tab. 7.2.2.1-1 and 7.2.2.2-1). 

Due to the strong influence of NS_lh on modelling, it came as something of a 
surprise that the integration of this parameter now brought no visible improvement in 
model performance (Tab. A2 in Annex). The four comparisons of runs with and 
without this parameter were equally good in two cases; in one case, a run with this 
parameter was slightly better; and in one case slightly worse. Based on this equality 
in model performance, despite strongly differing susceptibility maps, it can once 
again be concluded that there is a need for a new, partial validation method that can 
better differentiate and reflect the differences in results in model performance (see 
comparison of the parameter maps basic disposition of the geosphere).  

However, compared to the runs with “level low” precipitation, it was seen that the 
integration of “level high” precipitation always led to a slight improvement in model 
performance.  

In order to investigate the influence of NS_lh as an integrated parameter on model 
performance, there was a comparison of runs with the same parameter combination, 
but with (runs 60, 61, 63, 68 and 70) and without NS_lh (runs 48_D, 10, 46, 33 and 
69). The comparisons to NS_lg were made by juxtaposing the runs 61 and 21, and 
62 and 22. Finally, by juxtaposing runs 65 and 63, and 58 and 68, a comparison was 
made to NS_lh as an independent parameter (for run parameters, Tab. 7.2.2.1-1 and 
7.2.2.2-1). 
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It was now seen, as in the case of “level low“ precipitation, that precipitation “level 
high,” in integrated form, usually exerted only a weak influence on the modelling 
result, and that this influence was also weaker than that of NS_lh as an independent 
parameter. Quite small differences are therefore seen in the difference maps of runs 
with and without integrated precipitation “level high,” and precipitation distribution is 
scarcely traced. Furthermore, in the sensitivity analysis as well, the integration of 
NS_lh in integrated form generally changes very little (there are exceptions, 
however), so that subsurface flow dispositions with integrated precipitation “level 
high” (QDisp_lg_GK_lg_fa_NS_lh, QDisp_lg_GK_lh_fa_NS_lh, 
QDisp_lg_BK_fa_NS_lh and QDisp_lh_fa_NS_lh) also show a moderate influence 
on the result in most cases. Generally speaking, therefore, it has to be said that the 
neural network hardly reacts in any significant way to integrated precipitation “level 
high.” That in turn can be attributed to the subsurface flow disposition containing 
NS_lh, usually having only a moderate influence on the result, and NS_lh in turn 
making up only part of that parameter. 

Given the slight influence of NS_lh in integrated form, it is not surprising that the 
validation comparisons (Tab. A2 in Annex) showed no improvement (rather a slight 
deterioration) in model performance with the integration of this parameter. It was 
even demonstrated that NS_lh in integrated form, compared to NS_lh in independent 
form, resulted in mild deterioration in model performance. Finally, the comparison of 
the two integrated parameters NS_lg and NS_lh showed that this did not lead to any 
change in model performance. 

 

Forest and road network without land-use mapping 

 Significance of the parameter maps forest and road network without land-use 
mapping (Wald_Sat_lg, Wegenetz_lg) 

Use of the parameter maps without land-use mapping (regionalisation data) results 
in a very strong deterioration in the model performance compared to parameter 
maps with mapped land-use. When forest is integrated without land-use mapping, 
the neural network can no longer recognize its stabilizing effect as clearly, and the 
parameter is no longer showing great influence on the modelling result. The mapping 
of land-use information (particularly forest and roads) is therefore enormously 
significant in the event documentation of mass movements. 

The influence of regionalization data [= forest and road network data without land-
use mapping (Wald_Sat_lg, Wegenetz_lg, see Chapter 6.1.2)] on the model 
performance was studied by means of the runs 71, 72 and 73. For this purpose, 
there was a comparison between the runs with regionalization data and those with 
the same parameter combinations, but with mapped land-use data 
(Wald_Sat_lg_mb, Wegenetz_lg_mb) (runs 58, 33 and P2, for run parameters, Tab. 
7.2.2.2-1). 

Here too, a comparison to the runs with mapped land-use showed the same 
phenomenon as with the “level low” runs: the parameter Wald_Sat_lg has a weaker 
influence on modelling, so that in forest, there is an increase, and outside forest 
there is a decrease in susceptibility. The parameter Wegenetz_lg has an 
unexpectedly strong influence on modelling, so that there is often an increase in 
susceptibility (with the exception of run 72) in the influence area of roads. 
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The validation comparison (Tab. A2 in Annex) showed, as seen at the “low level” 
results, the clearest picture of  any obtained in this project: all of the runs (71, 72 and 
73) calculated with regionalisation data performed worse than the corresponding 
runs with mapped land-use (runs 58, 33 and P2, see also Fig. 7.2.2.2-9). In contrast 
to the use of regionalisation data, the use of parameters with mapped land-use 
greatly improved the model performance, particularly as regards the parameter forest 
(areas stabilized by tree roots). The mapping of land-use information (especially 
forest and roads) as part of event-documentation of mass movements is therefore 
enormously important, particularly when the data is subsequently incorporated into 
susceptibility modelling. 

 

Validation comparison of all “level high” runs and selection of the best “level high” 
runs with neural networks 

 Comparison of all “level high” parameter maps 

Generally speaking, the validation results of all “level high” runs, with and without 
consideration of one parameter, were very similar. Thus the integration of the new 
“level high” parameter maps of the geosphere (basic disposition based on soil map 
or geological basic disposition based on the conceptual soil map) and the 
precipitation map “level high” resulted in scarcely any changes in model performance 
compared to non-consideration of these parameters. A similar situation applied with 
respect to the subsurface flow disposition “level high” based on field mapping 
parameter, and for road network “level high,” both of which, compared to non-
consideration of these parameters, resulted in only slight improvements in validation 
results. Major differences in validation, and thus the biggest improvements in model 
performance, could be only achieved – as before with the “level low” runs – in the 
case of parameters with mapped land-use information as opposed to parameters 
without mapped land-use information (= regionalization data), and with the inclusion 
of the parameter forest “level high” as opposed to non-consideration of this 
parameter (for comparisons between “level low” and “level high” variants, see 
Chapter 7.2.2.3). 

This fact is apparent from a comparison of all runs with “level high” parameter maps 
according to the validation strategy developed by GBA (Chapter 7.2.1 and Tab. A2 in 
Annex) and is also clearly seen in  the validation of the test data for  “level low” 
events according to Chung and Fabbri (1999) (Fig. 7.2.2.2-9). So there is essentially 
a broad array of run-curves in which only the runs with regionalisation data (the 
dashed lines for the runs 71, 72 and 73) as well as the runs containing Wald_Sat_lh 
(35 and 36) swerve downward. However, as Wald_Sat_lh contains no mapped land-
use information, 35 and 36 should be considered regionalization data, so that this 
curve sequence will once again fit into the overall picture.  
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Fig. 7.2.2.2-9: Validation according to Chung & Fabbri (1999) for the test data of “level high” runs 

 
As with the “level low” variants, there were, in the case of the “level high” variants, 
several results among the best runs, which, based on the validation comparisons, 
were classified as “equally good.” The runs 33, 58, 59 and P2, which were validated 
as equally good, as well as run 61, which turned out to be very slightely worse as the 
others, were selected as the “best 5”–“level high” runs (thick lines in Fig. 7.2.2.2-9). 

It is remarkable in this context that four of the “best five” runs (with the exception of 
run 33) display the parameter NS_lh, which appears in 58, 59 and P2 as an 
independent parameter and in 61, on the other hand, in integrated form. It is also 
striking that all of the “best five” “level high” runs include Waldsat_lg_mb, VW-
DHM10, HN-DHM10, Wegenetz_lg_mb and also one of the “level low” subsurface 
flow disposition parameters. This clearly demonstrates, based on the better 
validation results, that the “level low” variants are preferable to the “level high” 
variants (see Chapter 7.2.2.4). In runs 33 and 58 the additional parameters were 
QDisp_lg_BK_fa and BK; in run 59, QDisp_lg_GK_lg_fa and Sub_GK_lg; in run 61, 
QDisp_lg_GK_lg_fa_NS_lh and Sub_GK_lg; and in run P2, QDisp_lg_GK_lh_fa, 
Sub_GK_lh and NS_lh (for run parameters, see Tab 7.2.2.2-1). Thus, for the “best 
5”-“level high” runs, all three geosphere basic disposition maps were used, and the 
two best runs contained BK (run 58) and Sub_GK_lh (run P2). In the test data, run 
58, one of the two best runs, showed an AUC for Chung & Fabbri (1999) of 92.64%, 
and 92.99% for ROC, a recognition rate of 90.5%, and with the GBA validation 
method, a value of 57.88. 
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 7.2.2.3 Modelling results using process-oriented parameter maps 

 Significance of modelling results using process-oriented parameter maps 

A deterioration in model performance was seen in all runs that used process-oriented 
parameter combinations exclusively, the “level high” runs showing even greater 
deterioration in model performance than the “level low” runs. 

Runs with process-oriented parameter combinations exclusively were introduced into 
the method of model integration of parameter maps according to the description in 
Chapter 6.2, for both “level low” and “level high” runs. These parameter combinations 
were established in advance, based on the authors’ expert knowledge, and were 
thus different from the other parameter combinations, which were found through 
successive search, validation, and selection. That this procedure was justified can be 
seen from that fact that four of the five runs with process-oriented parameter 
combinations were not among the lot of runs found through successive searches.  

In the case of “level low” variants, the runs 26 (=19), 27 and 28 exhibited process-
oriented parameter combinations. For the “level high” variants, these were the runs 
69 and 70. The “level low” variants were comprised of the parameters 
Wald_sat_lg_mb, Wegenetz_lg_mb, HN-DHM10, VW-DHM10 and HK-DHM10; run 
26 also containing QDisp_lg_GK_lg_fa and Sub_GK_lg; whereas run 27 contained 
QDisp_lg_GK_lh_fa and Sub_GK_lh. And finally, run 28 was calculated with the 
parameters of run 26 (=19) plus NS_lg. The “level high” variants exhibited both the 
parameters Wald_sat_lg_mb, Wegenetz_lh_mb, HN-DHM10, VW-DHM10, HK-
DHM10 and Sub_GK_lh; run 69 also containing the parameter Qdisp_lh_fa, and run 
70 the additional parameter QDisp_lh_fa_NS_lh, which had been augmented with 
the integrated precipitation (for run parameters, see Tab 7.2.2.1-1 and 7.2.2.2-1). 

Here too, phenomena appeared that had also been observed in previous runs: 
because all runs with process-oriented parameter combinations contain the 
curvature classification HK-DHM10, which is highly differentiating on a small scale, 
their susceptibility maps usually present a rather agitated appearance. Here, the 
class 0 (=dell) is the curvature class with the strongest influence on model result. In 
the “level high” runs with Wegenetz_lh_mb, it was shown that this parameter had 
again an obviously weaker influence than the corresponding “level low” parameter 
Wegenetz_lg_mb.                                     

In order to make statements on model performance, the runs with process-oriented 
parameter combinations were now subjected to validation comparisons with one of 
the best “best 5” runs from “level low” and “level high” respectively. Here, both “level 
low” comparisons (with run 10) and “level high” comparisons (with run 58) presented 
the same picture: in all runs with process-oriented parameter combinations, there 
was a deterioration in model performance. The level high” runs usually displayed 
even greater deterioration in model performance than the “level low” runs, where the 
runs 26 and 28 were only slightly worse than run 10. This meant that the model 
performance in the “level low” runs was also somewhat better than that in the “level 
high” runs. 
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7.2.2.4 Comparison of “Level Low” and “Level High” Results  

 Comparison of “level low” and “level high” results and selection of the best 
results 

The validation comparisons of “level high” with “level low” runs showed that the “level 
high” parameter maps only rarely contributed toward an improvement in model 
performance. Slight improvements compared to “level low” were largely seen only 
with “level high” precipitation as an independent parameter. In the case of all other 
“level high” parameter maps, however, there was no improvement compared to the 
respective “level low” parameter maps, and in many cases there was actually a 
deterioration in the model performance.  

Validation comparisons of the “best 5”-“level low”- with the “best 5”-“level high”-runs 
showed that the differences between all results were quite small. However the results 
of the “level high” runs were at least slightly better than those of the “level low” runs. 
This can be explained by all of the best “level high” runs being calculated with the 
parameter “level high” precipitation as an independent parameter. That also applied 
to the overall best results 58, 59 and P2. The results of runs with combinations of 
process-oriented parameter maps were even worse than those of the “low level” 
runs. That too would be good, if it was checked by means of new partial validation 
methods that remain to be developed. 

Essentially, the conclusions provided by “level low” runs (Chapter 7.2.2.1) were 
largely confirmed by the “level high” runs (Chapter 7.2.2.2): the clearest and probably 
most important conclusion that can be drawn from the “level low” and “level high” 
results is that the use of parameter maps with mapped land-use of forest and roads 
led to a definite improvement in the model performance compared to parameter 
maps that are based exclusively on generally available data. This also underlines the 
enormous importance of mapping land-use information (particularly forest and roads) 
when documenting gravitational mass-movement events. It was also clear in both 
level-categories that forest is an important parameter that strongly contributes to 
improved model performance, and that road network, subsurface flow disposition 
and geological basic disposition “level low” tend to improve model performance to 
varying degrees. This is particularly remarkable in the case of geological basic 
disposition, because this parameter is influencing the model just very weakly and not 
in the expected (desired) direction, but rather in the opposite direction. 

It was also seen in both level-categories that taking into account different subsurface 
flow disposition maps usually resulted in very similar susceptibility maps and 
validation results. A similar situation was seen when incorporating precipitation in 
integrated form. On the other hand, the integration of precipitation as an independent 
parameter map led to an obviously different distribution of susceptibilities (there was 
a clear pattern of precipitation distribution). However, this resulted in scarcely any 
improvement in the model performance. Furthermore, there was a slight deterioration 
in model performance in both level-categories due to curvature classification. 

The following conclusions were derived from the “level low” runs only  

- both forest maps (based on satellite images or DCM) resulted in the same 
model performance. 

- profile curvature and flow accumulation led to a strong and slight improvement 
in model performance respectively.  



AdaptSlide 169 

 

The conclusions gained from “level high” runs only were that: 

- basic disposition based on the soil map results in a slight deterioration in 
model performance,  

- geological basic disposition “level high” does not show any tendency toward 
improvement/deterioration in model performance. 

Comparison of the validation results of “level high” and “level low” runs 
demonstrated that “level high” parameter maps rarely contributed to improvement 
in model performance (Tab. A1 and A2 in Annex). Slight improvements compared to 
“level low” were in fact only seen with “level high” precipitation as independent 
parameter, which also had a much stronger influence on modelling than precipitation 
“level low.” However, just how slight these improvements actually are is 
demonstrated by the fact that when both precipitation “level low” and precipitation 
“level high” were compared to runs without the parameter precipitation, no 
improvement in model performance was seen. 

However, with all other “level high” parameter maps, there is no improvement 
compared to the respective “level low” parameter map. Thus, in the case of 
precipitation “level high” in integrated form, there was no change in model 
performance, and in the case of the two parameter maps for geosphere (geological 
basic disposition “level high,” basic disposition based on soil map), the forest map 
“level high,” the road system “level high” and the subsurface flow disposition “level 
high” by means of field mapping, there was even a deterioration in model 
performance.  

In the case of subsurface flow disposition, the inclusion of a “level high” map in the 
“level low” subsurface flow disposition (as in the case of subsurface flow disposition 
“level low” based on the geological map “level high,” subsurface flow disposition 
“level low” based on the soil map), resulted in virtually no improvement in model 
performance compared to the “level low” parameter map. The only exception here 
was subsurface flow disposition “level low” based on soil map, which in the case of 
two runs was slightly better than subsurface flow disposition “level low” based on 
geological map “level low”. 

The fact that most “level high” parameter maps produced no improvement, or even a 
deterioration in model performance, is remarkable, and in part incomprehensible, but 
it can also be explained to some extent. The most surprising thing is probably that 
geological basic disposition “level low,” despite its “contrary” and very weak influence 
on modelling, results in better model performance than the rather more accurate and 
more influential parameters geological basic disposition “level high and basic 
disposition based on the soil map.  

In contrast, model performance being worse with the use of road system “level high” 
can probably be explained by the fact that here, the area with coding “influence area 
yes” becomes much larger than it is in the case of the “level low” variant, while the 
number of mass movements that lie within the influence area of the roads does not 
increase (assignment is done by means of land-use coding). However, this also 
leads to the connection between mass-movement distribution and the influence area 
of roads becoming weaker (Chapter 7.2.2.2). The similarity in model performance 
through integration of the parameters subsurface flow disposition and precipitation in 
integrated form can be attributed in both level-categories to the fact that the different 
underlying substrate maps as well as the precipitation map are only part of the 
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parameter subsurface flow disposition, so that the susceptibility maps generated are 
usually very similar (Chapters 7.2.2.1 & 7.2.2.2). 

The absence of improvement with use of the other “level high” parameter maps can 
only be explained as follows:  

� On the one hand, it might be the case that the “level high” parameter map 
used do not reproduce the corresponding situation any more realistically or in 
a way that is any more process-oriented than the “level low” map. So it is 
questionable whether the effort required to produce the “level high” parameter 
map for modelling is actually worthwhile.  

� On the other hand, it might also be the case that individual “level high” maps 
actually are more realistic and process-oriented than the corresponding “level 
low” maps, but that the validation method, due to the simplifying, summarised 
area-wide validation (Chapter 7.1) is unable to recognise these improvements 
in the susceptibility map.  

This deficit underlines the necessity of new partial validation methods. Furthermore, 
there is also the possibility that the improvements in the parameter map cannot be 
recognised by the model, because the available data is inadequate, given the 
complexity of the material. 

The following picture emerged from a validation comparison of the “best 5”-“level 
low” with the “best 5”-“level high” runs and the runs with process-oriented 
parameter-map combinations:  

Basically, all three model-run groups led to quite similar results. Closer examination 
showed that the “level high” runs (33, 58, 59, 61 and P2) tended to exhibit slightly 
better model performance than that of the “level low” runs (5, 6, 10, 23 and 24), 
which was however in turn somewhat better than model performance in process-
oriented runs. For “level low” and “level high” runs, this can be seen in Tab. 7.2.2.4-1 
and in Fig. 7.2.2.4-1 for all three groups. The latter does not cover the entire 
validation according to the validation strategy used (Chapter 7.2.1) but rather only 
the validation according to Chung & Fabbri (1999) of the validation data (it was used 
primarily for assessment of the neural-networks runs), but the described connection 
is still clearly visible. Fig. 7.2.2.4-2 displays the same situation for the test data that 
was used later in order to compare the modelling methods (Chapters 7.1 and 
Chapter 8). Here the curve spread is somewhat larger. 
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Fig. 7.2.2.4-1: Validation according to Chung & Fabbri (1999) for the validation data of the “best 5”-

“level low” (green) and “level high” runs (red), as well as the runs with process-oriented parameter 

combinations (black) 

 
Fig. 7.2.2.4-2: Validation according to Chung & Fabbri (1999) of the test data of the “5 best”-“level low” 

(green) and “level high” runs (red), as well as the runs with process oriented parameter combinations 

(black) 
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The poorer model performance seen for the runs with process-oriented parameter 
combinations might now be due to the maps themselves or to the validation 
methodology used. This once again points out the necessity of new partial validation 
methods. 

Initially, the tendency toward slightly better validation results for the “level high” runs 
might be surprising, as it has been shown that the “level high” parameter maps, 
except for the precipitation map, usually contribute to a deterioration in the model 
performance (see above and Chapter 7.2.2.2). But it should be considered here, in 
the first place, that the “level high” runs largely use “level low” parameters, because 
almost all of the “level high” parameters were rejected due to poorer validation 
results.  

A second, important reason for this was the selection of the overall best results 
(the best results of “level low” and “level high”). This was done using Tab. 7.2.2.4-1, 
in which all of the best five runs from “level low” and “level high” were compared on 
the basis of the validation strategy in Chapter 7.2.1. As noted above, the table shows 
that the validation results are very similar, which is why several best results had to be 
selected. The results of runs 58, 59 and P2 were selected as the best overall results 
from modelling with neural networks, because they were the only results that were 
never worse than the others, and also, compared to each other, they produced 
equally good validation results. 

The table now shows the reason for the apparent contradiction in the better 
validation results for the “level high” runs, despite the general deterioration when 
using the “level high” parameter maps. The three best runs (58, 59 and P2), which 
are also nearly always better than the “level low” runs, all include the parameter 
precipitation “level high” in independent form. This is also the only “level high” 
parameter that actually resulted in a slight improvement compared to the “level low” 
runs. On the other hand, “level high” runs without this parameter usually led to 
validation results that were poorer than those obtained using corresponding “level 
low” parameter maps exclusively (Chapter 7.2.2.2). Thus, the best “level high” run 
without precipitation (run 33) for example, shows somewhat poorer validation results 
than the two “level low” runs 10 and 24.  
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Tab. 7.2.2.4-1: Validation comparison of the “best 5” – “level low” and “best 5” – “level high” runs 

according to the validation strategy in Chapter 7.2.1 (-: equal, x: not meaningful) 

 Best 5 „level low“ Best 5 „level high“ 

Compared 

to 
5c 6 10 23(NS) 24 33 58(NS) 59(NS) 61(NSi) P2(NS) 

B
e

st
 5

 „
le

v
e

l 
lo

w
“ 

5c x - Slightly 

worse 

- Slightly 

worse 

- Slightly 

worse 

Slightly 

worse 

- Very 

slightly 

worse 

6 - x Slightly 

worse 

- Slightly 

worse 

Slightly 

worse 

Slightly 

worse 

Slightly 

worse 

- Very 

slightly 

worse 

10 Slightly 

better 

Slightly 

better 

x - - Very 

slightly 

better 

Very 

slightly 

worse 

- - Slightly 

worse 

23(NS) - - - x Very 

slightly 

worse 

Very 

slightly 

worse 

Very 

slightly 

worse 

Very 

slightly 

worse 

- Slightly 

worse 

24 Slightly 

better 

Slightly 

better 

- Very 

slightly 

better 

x Very 

slightly 

better 

Very 

slightly 

worse 

- - Very 

slightly 

worse 

B
e

st
 5
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le
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e

l 
h

ig
h

“ 

33   slightly 

better 

very 

slightly 

worse 

Very 

slightly 

better 

Very 

slightly 

worse 

x - - - - 

58(NS) Slightly 

better 

Slightly 

better 

Very 

slightly 

better 

Very 

slightly 

better 

Very 

slightly 

better 

- x - Very 

slightly 

better 

- 

59(NS) Slightly 

better 

Slightly 

better 

- Very 

slightly 

better 

- - - x - - 

61 

(Nsi) 

- - - - - - Very 

slightly 

worse 

- x Very 

slightly 

worse 

P2(NS) Very 

slightly 

better 

Very 

slightly 

better 

Slightly 

better 

Slightly 

better 

Very 

slightly 

better 

- - - Very 

slightly 

better 

x 
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7.3. Modelling and Validation of Landslide Susceptibility 
Maps by means of Weight of Evidence (JR) 

7.3.1 Basic Principles 

The Weight of Evidence (WoE) modelling method is a quantitative ‘datadriven’ 
method used to combine datasets. The method was initially applied to non-spatial, 
quantitative, medical diagnoses to combine evidence from clinical diagnoses to 
predict diseases (Spiegelhater & Kill-Jones 1984, Spiegelhater 1986). In 
geosciences the method first was applied for mineral potential mapping by 
implementing it in a GIS framework (Bonham-Carter et al. 1989). Sabto (1991) and 
Van Westen (1993) applied the method for landslide susceptibility analysis based on 
GIS technology. Today numerous examples from many parts of the world exist 
making use of the WoE-method for landslide susceptibility analysis (e.g. van Westen 
1993, Guzzetti et al. 1999, Lee et al. 2002, Klingseisen & Leopold 2006 a, b, Mathew 
et al. 2007, Rezaei Moghaddam et al. 2007, Thiery et al. 2007, Long 2008, Proske et 
al. 2008, Barbieri & Cambuli 2009, Jayathissa 2010). 

WoE is basically the Bayesian approach in a log-linear form. Prior probabilities 
(PriorP) and posterior probabilities (PostP) are the most important concepts in the 
Bayesian approach. PriorP is the probability that a terrain unit contains the response 
variable before taking predictive variables into account, and its estimation is based 
on the response variable density for the study area. This initial estimate can be 
modified by the introduction of other evidences. PostP is then estimated according to 
the response variable density for each class of the predictive variables. The model is 
based on the calculation of positive (W+) and negative (W-) weights, whose 
magnitude depends on the observed association between the response variable and 
the predictive variable. 

 

 

 

 

P Probability 

RV Response Variable 

 

In Eqs. (1) and (2), B is a class of the predictive variable and the overbar sign ‘–’ 
represents the absence of the class and/or response variable. The ratio of the 
probability of response variable presence to that of response variable absence is 

(1) 

(2) 
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called odds (Bonham-Carter 1994). The WoE for all predictive variables is combined 
using the natural logarithm of the odds (logit), in order to estimate the conditional 
probability of landslide occurrence. When several predictive variables are combined, 
areas with high or low weights correspond to high or low probabilities of presence of 
the response variable. Further details of the method are given by many authors (e.g. 
Bonham-Carter 1994, Porwal et al. 2003, Neuhäuser and Terhorst 2007, Barbieri & 
Cambuli 2009). 

As mentioned by Bonham-Carter (1994), the results of the WoE method are strongly 
dependent on the number of events introduced in the model (e.g. on the estimation 
of probabilities) and on the quality of the landslide inventory map. The WoE method 
requires the assumption that input maps are conditionally independent. Expert 
selection or different types of statistical tests can be employed to test the 
dependency of the factors with respect to landslides. Pairwise comparison is the 
most employed method for testing conditional independence in the modelling 
approach (Regmi et al. 2010, ref. to Chapter 6.2 and Tab. 6.2.3). 

The WoE model is generally applied using binary evidential themes i.e. with factor 
maps which contain two classes, representing the presence or absence of the factor. 
Real world geospatial data are usually multi-class or continuous. Hence this requires 
the analysis of many individual maps for each factor class separately (e.g. each 
slope class separately for the slope theme).  

 

7.3.2. Modelling and Validation Results 

Using the WoE method, the spatial relationship between landslide-occurrence 
location and landslide-related factors was calculated.  

As the method is a pixel-based one the response variable (landslide occurrence) can 
be considered in a binary manner (1 / 0) solely. The WoE modelling results therefore 
are not fully comparable with the results of Artificial Neural Network (ANN) modelling 
(section 7.2) and Logistic Regression modelling (section 7.4) where the occurrence 
of more than one landslide per pixel (which is the case for 39 raster cells in the study 
area) could be taken into account. 

Approx. 70 % of the available landslide-dataset “high quality for modelling” (cf. Tab. 
6.1.1.1) were used to calculate the weights. This training dataset corresponds to the 
original “training-“ and “validation” portion of the complete dataset (Chapter 6.1.2). 
The remaining 30 %, corresponding to the original “test” portion of the dataset were 
used for the validation of the modelling results. 

In practice, in WoE positive and negative weights (W+ and W-) are calculated, the 
magnitude of which depends on the measured association between the response 
variable (the landslides) and the predictor variables (causative factors). The 
modelling process was based on an Arc Macro Language (AML) script created in 
ArcInfo. The calculated weights were standardized for each map (0 – 1). 

As described in section 6.2 a general strategy in successively involving different 
parameters for the statistical modelling was followed. Basically at first only “level low” 
parameters were considered, followed by addition or substitution of “level high” 
parameters. 

Based on different combinations of these parameter maps in total 63 modelling runs 
were calculated.  
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The results are presented in the following sections. 

The validation of the results made use of the following methods: 

1. Modelled probability (cut-off value 0,5) 

2. Chung & Fabbri Curve (Chung & Fabbri 2003) 

3. Receiver Operating Characteristic (ROC) - Curve 

These methods as well as some fundamental problems are described in detail in 
section 7.1. The calculation was applied to the training dataset (“success rate”) as 
well as to the test dataset (“prediction rate”). 

The modelling strategy (i.e. which parameter maps were kept in the further modelling 
steps and which of the maps were rejected) was based on the results of the 
validation. The strategy was based on the combined assessment of the validation 
results of both the LR and the WoE modelling. 

With regard to the comparison of two different modelling runs the following aspects 
were taken into account:  

� Differences < 1,0 % related to modelled probability (method 1) were not taken 
into account 

� Differences < 0,5 % related to areas under curve (methods 2 and 3) were not 
taken into account. 

� The methods 2 and 3 was given higher significance than method 1.  

� The validation results of the LR modelling was given higher significance than 
the results of the WoE modelling. 

� the prediction rate was given higher significance than the success rate. 

� The results of the ANN modelling (Geological Survey) were taken into account 
as well to allow for similar modelling sequences in both the modelling groups. 

� In case that none of the above mentioned decision criteria supported a clear 
decision, expert-knowledge of the involved scientific groups was taken into 
account. 

The results of the validations are summed up in Tab. 7.3.2-1. 

Generally the WoE modelling results are characterized by a high number of pixels 
situated in the medium part of the susceptibility spectrum compared to the other two 
statistical methods. This is expressed by a high portion of yellow areas in the maps 
(Fig. 7.3.2.1-5 to 7.3.2.1-7 and Fig. 7.3.2.2-5 to 7.3.2.2-6). ANN as well as LR show 
much better differentiation between high and low susceptibilities. 
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Tab. 7.3.2-1: Results of Validations of Modelling Runs calculated with Weight of Evidence 
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7.3.2.1. Modelling Results using Parameter Maps of Low Processing Effort  

 “Level low” parameter maps are generated by means of simple, standard methods 
(cf. Fig. 6.2-1). Based on different combinations of these parameter maps 32 
modelling runs were calculated. The modelling procedure and the included 
parameter maps can be followed by Tab. 7.3.2.1-1. 

The modelling runs were started with some very simple combinations of parameter 
maps taking into account only a few basic parameters (runs 1, 2 and 3). The 
exchange of Wald_DKM_lg_mb by Wald_Sat_lg_mb only resulted in very low 
improvements of the validation results. Nevertheless, during further progress of the 
modelling Wald_Sat_lg_mb was kept assuming that this dataset presented higher 
relevance than the data of the Digital Cadastral Map (expert knowledge). 

After involvement of the influence of the road network the validation results show a 
significant improvement of both success and prediction rates (> 90 % for prediction 
rates, cf. Tab. 7.3.2-1)  

In the following modelling runs parameters connected to subsurface flow 
(Flowaccumulation, QDisp) were involved. As based on the field investigations, 
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subsurface flow was rated to be highly relevant from the process-oriented point of 
view by the involved experts, such maps were kept in the further modelling 
procedure even accepting that the results of the validation were worsening. 

The susceptibility maps derived from runs 5 and 6 are shown in the Fig. 7.3.2.1-5. 
and 7.3.2.1-6. 

In run 10 the first parameter map considering geological / pedological aspects was 
involved (Sub_GK_lg) which lead to only a marginal improvement compared to run 6. 
The involvement of Sub_GK_lg in run 11 as well did not show any significant 
difference compared to run 2. Nevertheless based on additional expert-knowledge 
this parameter map was kept in the further modelling steps.  

Run 13 was a test run without any forest map and resulted in a significant decrease 
of the validation results. 

The cumulated Chung & Fabbri as well as ROC-curves of runs 1 to 13 are presented 
in Fig. 7.3.2.1-1 to 7.3.2.1-4 showing clearly  

� the very good results of run 3 (without any involvement of maps connected to 
subsurface flow),  

� the bad result of run 13 (without any involvement of forest maps) and  

� the strong grouping of all the remaining runs. 

Runs 14a and 14b are variations of run 10 including Sub_GK_lg with different 
subsurface flow parameter maps. The validation results are very similar to those of 
run 10. The susceptibility map derived from run 14a is shown in Fig. 7.3.2.1-7. 

Run 15 adds Sub_GK_lg to the parameters involved in run 3 resulting in more or less 
the same validation results (with prediction rates of Chung & Fabbri and ROC 
method > 90 %).  

Run 16 which does not consider the influence of the road network results in 
significantly lower AUC values. 

The following modelling runs test different derivatives of the subsurface flow, partly 
involving the distribution of precipitation (run 20, run 23, and run 28). Highest AUC 
values of both success and prediction rates (> 90 % for prediction rates, cf. Tab. 
7.3.2-1) are calculated with results of run 20.  

Runs 29 to 32 are calculated using regionalisation data (Wald_DKM_lg, 
Wegenetz_lg) instead of field-based datasets. This replacement results in a 
significant decrease of all calculated validation indices. 
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Predictionrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, ,10, 11, 12, 13    
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Fig. 7.3.2.1-1: Cumulated Chung & Fabbri curves of runs 1 to 13 (predictionrate) 

Successrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, ,10, 11, 12, 13    
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Fig. 7.3.2.1-2: Cumulated Chung & Fabbri curves of runs 1 to 13 (successrate) 
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Predictionrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
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Fig. 7.3.2.1-3: Cumulated ROC curves of runs 1 to 13 (predictionrate) 

Successrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
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Fig. 7.3.2.1-4: Cumulated ROC curves of runs 1 to 13 (successrate) 
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Tab. 7.3.2.1-1: Model runs using Parameter Maps of Low Processing Effort only 

Run Parameter Maps (abbreviations cf. Tab. 6.2.2) 

 Slope Curvature Forest Street Network Hydro(geo)logy Geology / Pedology Precipitation 

1 HN-DHM10 VW-DHM10 Wald_DKM_lg_mb     

2 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb     

3 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb    

4 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb Flowaccumulation   

5 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lg_fa   

6 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa   

7 HN-DHM10 HK-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa   

8 HN-DHM10 HW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa   

9 HN-DHM10 VW-DHM10, HW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa   

10 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg  

11 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb   Sub_GK_lg  

12 HN-DHM10 VW-DHM10 Wald_DKM_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg  

13 HN-DHM10 VW-DHM10  Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg  

14a HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lg_fa Sub_GK_lg  

14b HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb Flowaccumulation Sub_GK_lg  
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15 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb  Sub_GK_lg  

16 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb  QDisp_lg_GK_lh_fa Sub_GK_lg  

18 HN-DHM10  Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg  

19 HN-DHM10 HW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg  

20 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg NS_lg 

21 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lg_fa_NS_lg Sub_GK_lg  

22 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa_NS_lg Sub_GK_lg  

23 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg NS_lg 

24 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_BK_fa Sub_GK_lg  

25 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_BK_fa_NS_lg Sub_GK_lg  

26 HN-DHM10 VW-DHM10, HK-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lg_fa Sub_GK_lg  

27 HN-DHM10 VW-DHM10, HK-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lh  

28 HN-DHM10 VW-DHM10, HK-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lh NS_lg 

29 HN-DHM10 VW-DHM10 Wald_DKM_lg Wegenetz_lg QDisp_lg_GK_lh_fa Sub_GK_lg  

30 HN-DHM10 VW-DHM10 Wald_DKM_lg Wegenetz_lg QDisp_lg_GK_lh_fa Sub_GK_lg NS_lg 

31 HN-DHM10 VW-DHM10 Wald_DKM_lg     

32 HN-DHM10 VW-DHM10 Wald_Sat_lg Wegenetz_lg QDisp_lg_GK_lh_fa Sub_GK_lg  
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Fig. 7.3.2.1-5: Result of WoE modelling run 5 
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Fig. 7.3.2.1-6: Result of WoE modelling run 6 
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Fig. 7.3.2.1-7: Result of WoE modelling run 14a 
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For visualisation of differences of particular modelling runs maps of differences were 
calculated.  

In the following examples negative differences between the two considered maps are 
displayed in red (higher susceptibility in the second map than in the first map), 
positive differences are displayed in blue (higher susceptibility in the first map than in 
the second map). 

In the example shown in Fig. 7.3.2.1-8 the parameter map Wegenetz_lg_mb 
additionally is involved in the second run (run 3) compared to the first run (run 2). 
The influence area of the road network is characeterized by significantly higher 
landslide susceptibility resulting in negative differences. 

 

Fig. 7.3.2.1-8: Map of differences between WoE run 2 and 3 

 

Fig. 7.3.2.1-9 (differences between run 5 and 6) is an example where contrasts are 
very low generally. In run 6 QDisp_lg_GK_lh_fa is used instead of 
QDisp_lg_GK_lg_fa. Significant differences therefore are restricted to areas where 
there are relevant differences between the “level low” and “level high” versions of the 
conceptual soil map (ref. to section 5.1). 

Differences between run 9 and run 10 (Fig. 7.3.2.1-10) clearly display the geological 
situation in the western part as Sub_GK_lg is added in run 10. The involvement of 
this parameter map generally results in lower susceptibilities in most of the study 
area. 
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Fig. 7.3.2.1-9: Map of differences between WoE run 5 and 6 

 

Fig. 7.3.2.1-10: Map of differences between WoE run 9 and 10  
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Fig. 7.3.2.1-11: Map of differences between WoE run 10 and 13 

 

Very high contrasts (positive as well as negative) are apparent in the map of 
differences between runs 10 and 13 (Fig. 7.3.2.1-11). The structure clearly reflects 
the forest cover as run 13 was calculated without any forest-related parameter map. 
Therefore forested areas are modelled with much higher susceptibilities in run 13 
compared to run 10 resulting in negative differences and vice versa in open land. 

 

7.3.2.2. Modelling Results using Parameter Maps of High Processing Effort  

“Level high” parameter maps are generated by advanced, higher developed methods 
with higher expenditure (cf. Fig. 6.2-1). Based on different combinations of these 
parameter maps 31 modelling runs were calculated. The modelling procedure can be 
followed by Tab. 7.3.2.2-1.  

Runs 33 and 34 involve BK as geological / pedological oriented parameter map for 
the first time. Compared to the consideration of Sub_GK_lg all validation indices are 
improved significantly by this measure. 

Runs 35 and 36 aim at the evaluation of Wald_Sat_lh. With regard to the 
consideration of Wald_DKM_lg the validation did not reproduce any improvements 
despite much higher processing efforts. This finding is ascribed to the fact that a lot 
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of information supposed to be relevant for the triggering of shallow landslides was 
lost by the aggregation process (cf. Chapter 5.3). 

The involvement of different parameter maps with regard to hydro(geo)logy (e.g. runs 
41 and 42 or 43 and 43a or 47 and 48) generally does not change the validation 
indices significantly although the susceptibility patterns do show differences. This 
issue which obviously is related to the applied validation methods is addressed in 
section 7.1. 

The involvement of Sub_GK_lh in runs 43 and 43a produces some improvements of 
the validation results (approx. 1,5 % AUC). Compared to modelling with Sub_GK_lg 
instead of Sub_GK_lh the validation indices do not change significantly. The 
susceptibility map based on run 43a is shown in Fig. 7.3.2.2-5. 

Following the general modelling strategy, the selected “best” results (selected by joint 
evaluation of WoE and LR modelling) both “level low” (run 10) and “level high” (run 
43a) were recalculated with one of the parameter maps replaced. In general, this 
procedure did not result in any significant improvements of the validation indices.  

Run 58 for the first time involves the parameter map NS_lh. Compared to run 43a 
without any map related to precipitation the prediction rates improve by approx. 1,5 
% AUC. Similar improvements are noticed compared to run 64 applying NS_lg 
instead of NS_lh. Run 58 consequently represented the best validation indices of the 
WoE “level high” modelling phase. The susceptibility map derived from run 58 is 
shown in Fig. 7.3.2.2-6. 

Fig. 7.3.2.2-1 to 7.3.2.2-4 give the Chung & Fabbri as well as the ROC curves of the 
five best “level high” calculations. A strong grouping of most of the curves with the 
best result shown by run 58 (yellow curves) can be observed in all diagrams. 

Runs 71 and 72 are calculated using regionalisation data (Wald_DKM_lg, 
Wegenetz_lg) instead of field-based datasets. Equal to the effect observed at the 
“level low” modelling, this replacement results in a significant decrease of all 
calculated validation numbers (approx. 7 to 8 % AUC). 
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Predictionrate: Run 43a, 58, 63, 66, 67    
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Fig. 7.3.2.2-1: Cumulated Chung & Fabbri curves of runs 43a, 58, 63, 66 and 67 (predictionrate) 

Successrate: Run 43a, 58, 63, 66, 67    
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Fig. 7.3.2.2-2: Cumulated Chung & Fabbri curves of runs 43a, 58, 63, 66 and 67 (successrate) 



AdaptSlide 193 

 

Predictionrate: Run 43a, 58, 63, 66, 67
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Fig. 7.3.2.2-3: Cumulated ROC curves of runs 43a, 58, 63, 66 and 67 (predictionrate) 

Successrate: Run 43a, 58, 63, 66, 67
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Fig. 7.3.2.2-4: Cumulated ROC curves of runs 43a, 58, 63, 66 and 67 (successrate) 
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Tab. 7.3.2.2-1: Model runs using Parameter Maps of High Processing Effort additionally (* run 73 modelled only with LR, see Chapter 7.4) 

Run Parameter Maps (abbreviations cf. Tab. 6.2.2) 

 Slope Curvature Forest Street Network Hydro(geo)logy Geology / Pedology Precipitation 

33 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_BK_fa BK  

34 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_BK_fa_NS_lg BK  

35 HN-DHM10 VW-DHM10 Wald_Sat_lh     

36 HN-DHM10 VW-DHM10 Wald_Sat_lh Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg  

37 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh    

40 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa   

41 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lg_GK_lh_fa   

42 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lh_fa   

43 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lh  

43a HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa Sub_GK_lh  

44 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lh_fa Sub_GK_lg  

45 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lh_fa Sub_GK_lh  

46 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa BK  

47 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lg_BK_fa BK  

48 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lh_fa BK  
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55 HN-DHM10 HK-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa Sub_GK_lh  

57 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb Flowaccumulation Sub_GK_lh  

58 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa Sub_GK_lh NS_lh 

59 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa Sub_GK_lg NS_lh 

60 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa_NS_lh Sub_GK_lh  

61 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lg_fa_NS_lh Sub_GK_lg  

62 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_GK_lh_fa_NS_lh Sub_GK_lg  

63 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa_NS_lh Sub_GK_lh  

64 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb, Wegenetz_lg_mb QDisp_lh_fa Sub_GK_lh NS_lg 

66 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lh_fa Sub_GK_lh, BK NS_lh 

67 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_BK_fa BK NS_lh 

68 HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lg_mb QDisp_lg_BK_fa_NS_lh Sub_GK_lh, BK  

69 HN-DHM10 VW-DHM10, HK-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lh_fa Sub_GK_lh  

70 HN-DHM10 VW-DHM10, HK-DHM10 Wald_Sat_lg_mb Wegenetz_lh QDisp_lh_fa_NS_lh Sub_GK_lh  

71 HN-DHM10 VW-DHM10 Wald_DKM_lg Wegenetz_lg QDisp_lh_fa Sub_GK_lh NS_lh 

72 HN-DHM10 VW-DHM10 Wald_DKM_lg Wegenetz_lg QDisp_lh_fa Sub_GK_lh, BK NS_lh 

73* HN-DHM10 VW-DHM10 Wald_Sat_lg_mb Wegenetz_lh_mb QDisp_lh_fa Sub_GK_lh NS_lh 
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Fig. 7.3.2.2-5: Result of WoE modelling run 43a 
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Fig. 7.3.2.2-6: Result of WoE modelling run 58 
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7.3.2.3. Modelling Results using Process Oriented Combinations of Parameter 

Maps 

Besides the systematic modelling following the general approach as described in 
section 6.2 and the validation results some runs were calculated under specific 
consideration of expert knowledge of the Geological Survey. Whereas run 26 only 
involves “level low” parameter maps, runs 27 and 28 as well as runs 69 and 70 
consider at least one “level high” parameter map. 

Following the validation indices the results of these modelling runs do not show any 
significant differences compared to the systematic modelling. However, it has to be 
noticed that the number of adequate modelling runs based on expert knowledge has 
been too low to confirm this conclusion definitely. 

7.3.2.4. Comparison of Results of different Processing Levels 

As is shown in Chapter 11 and in the Annex (Tab. A6) the single replacement of one 
“level low” parameter map by the adequate “level high” parameter map in most cases 
does not result in a significant improvement of the validation indices (> 1 % AUC). 

However, the cumulative estimation of the involvement of “level high” parameter 
maps by calculating the arithmetic means of the validation indices (only runs without 
regionalisation datasets were taken into account) shows a notable improvement of all 
“level high” validation indices compared to the “level low” results (Tab. 7.3.2.4-1). 
Although this result has to be interpreted with reservations because of the general 
modelling approach (e.g. identification of best parameter combination and further 
calculation based on this selection) the conclusion can be drawn that by combination 
of several “level high” parameter maps tentatively better results can be achieved. 

Tab. 7.3.2.4-1: Arithmetic means of validation indices of “level low” and “level high” modelling runs 

 Probability ROC (AUC) Chung/Fabbri (AUC) 

level low (n = 28) 

Successrate 69,12 % 83,16 % 82,73 % 

Predictionrate 77,51 % 86,26 % 86,76 % 

level high (n = 18) 

Successrate 72,89 % 84,18 % 83,99 % 

Predictionrate 79,32 % 87,66 % 87,89 % 

 

Aiming at getting an impression of the local differences between the “level low” and 
the “level high” modelling runs the five best results of the “level low” modelling stage 
were selected according to the joint assessment of the validation indices of both the 
WoE and the LR modelling method. The selected modelling runs are 5, 6, 14a, 23 
and 24. To create a common susceptibility map of these five runs the mid-range 
value was calculated. The same procedure was followed using the “level high” 
results of runs 43a, 58, 63, 66 and 67.  

The differences between the two resulting maps were calculated and are presented 
in Fig. 7.3.2.2-7. Generally considerable differences – positive as well as negative - 
can be registered all over the area. These differences can mainly be ascribed to the 
following facts:  
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1. the different involvement of the precipitation-related parameter maps: in the 
five best results of the “level low” modelling stage only one run involves NS_lg 
whereas in the five best results of the “level high” modelling stage three runs 
involve NS_lh. 

2. the different involvement of the geology-related parameter maps: in the five 
best results of the “level low” modelling stage three runs involve Sub_GK_lg 
whereas in the five best results of the “level high” modelling stage Sub_GK_lh 
is involved in most cases and BK is involved in two runs. 

 

Fig. 7.3.2.2-7: Map of differences between WoE best five maps of “level low” modelling stage and WoE 

best five maps of “level high” modelling stage 

 

7.4. Modelling and Validation of Landslide Susceptibility 
Maps by means of Logistic Regression (JR) 

Logistic multiple regression identifies variables that are significant in predicting the 
probability of occurrence. The approach allows a spatial distribution of probabilities 
or susceptibility values to be calculated within the GIS environment and was 
successfully used in numerous landslide susceptibilty studies (e.g. Carrara et al. 
1999, Dai and Lee 2002 a,b, Dai et al. 2004, Ayalew & Yamagishi 2005, Pradhan et 
al. 2006, Zhu & Huang 2006, Alemayehu 2007, Bell 2007, Chen & Wang 2007, 
Greco et al. 2007) 
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7.4.1. Basic Principles 

Logistic regression (LR) is a statistical method to describe a discrete i.e. binary 
dependent variable through several explanatory variables. With a LR the probability 
of an event occurring in an element can be estimated. This can be helpful for 
classifying elements into one of two populations. In this case, the elements are the 
units of analysis (pixels) and the populations are either the presence or the absence 
of landslides. The goal of LR would be to find the best fitting model to describe the 
relationship between the presence or absence of landslides (dependent variable) 
and a set of independent parameters. 

The advantage of logistic regression is that, through the addition of an appropriate 
link function to the usual linear regression model, the variables may be either 
continuous or discrete, or any combination of both types and they do not necessarily 
have normal distributions. This is an important pro given the usually non-normal 
distribution of most environmental data (Hair et al. 1998, Pradhan et al 2006). 

The dependent variable can have only 2 values (an event occurring or not occurring), 
and predicted values can be interpreted as probability because they are constrained 
to fall in the interval between 0 and 1.  

Quantitatively, the relationship between the probability of occurrence and its 
dependency on several variables can be expressed as: 

p = 1 / (1 + e-z)        (1) 

where p is the probability of an event occurring. The probability varies from 0 to 1 on 
an S-shaped curve and z is the linear combination of explanatory variables. Logistic 
multiple regression involves fitting to the data an equation of the form 

z = b0 + b1x1 + b2x2 + … + bnxn      (2) 

where b0 is the intercept of the model, the bi (i = 0, 1, 2, …, n) are the slope 
coefficients of the logistic multiple regression model and the xi (i = 0, 1, 2, …, n) are 
the independent variables. The model formed is then a logistic multiple regression of 
presence or absence of landslides (present conditions) on the independent variables 
(pre-failure conditions). 

In order to appropriately interpret Eqs. (1) and (2), one has to use the coefficients as 
a power to the natural log(e). The result represents the odds ratio or the probability 
that an event will occur divided by the probability that it fails to do so. If a coefficient 
is positive, its transformed log value will be > 1, meaning that the event is more likely 
to occur. If a coefficient is negative, the latter will be < 1 and the odds of the event 
occurring decreases. A coefficient of 0 has a transformed log value of 1, and it does 
not change the odds one way or the other. For a positive coefficient, the probability 
plotted against the values of an independent variable follows an S-shaped curve 
(Ayalew & Yamagishi 2005). For a negative coefficient the S-shape is turned around. 
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Fig. 7.4.1-1.: Basic Interrelations between the Components of Logistic Regression 

 

Although logistic multiple regressions finds a "best fitting" equation just as linear 
regression does, the principles on which it does so are rather different. Instead of 
using a least-squared deviations criterion for the best fit, it uses a maximum 
likelihood method, which maximizes the probability of getting the observed results 
given the appropriate regression coefficients.  

The technique of logistic multiple regression yields coefficients for each parameter. 
These coefficients serve as weights in an algorithm that can be used in the GIS 
database to produce a map depicting the probability of landslide susceptibility. 

Further methodological aspects of the method are given by many authors (e.g. 
Backhaus et al. 2000, Chen & Wang 2007, Hosmer & Lemeshow 1989, Kleinbaum 
1998). 

 

7.4.2. Modelling and Validation Results 

Using the logistic multiple regression method, the spatial relationship between the 
locations of landslides and environmental parameters was calculated.  

Approx. 70 % of the available landslide-dataset “high quality for modelling” (cf. Tab. 
6.1.1-1) were used as input to the logistic multiple regression algorithm. This training 
dataset corresponds to the original “training-“ and “validation” portion of the complete 
dataset (cf. Chapter 6.1.2). The remaining 30 %, corresponding to the original “test” 
portion of the dataset were used for the validation of the modelling results. 

The algorithm was calculated within R, a freely downloadable desktop statistical 
software package, to obtain the coefficients for the logistic multiple regression model. 
After the calculation was executed the results were imported to the GIS. 

As described in Chapter 6.2 a general strategy in successively involving different 
parameters for the statistical modelling was followed. Basically at first only “level low” 
parameters were considered, followed by addition or substitution of “level high” 
parameters. 

Based on different combinations of these parameter maps 64 modelling runs were 
calculated of which 63 were identical with the WoE modelling (Chapter 7.3). One 
additional run was added at the end of the “level high” modelling procedure (run 73). 
The parameters included in the calculations are shown in Tab 7.3.2-1. The modelling 
results are presented in the following sections. 

The validation of the results made use of the following methods: 
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1. Modelled probability (cut-off value 0,5) 

2. Chung & Fabbri Curve 

3. Receiver Operating Characteristic (ROC) - Curve 

These methods as well as some fundamental problems are described in detail in 
Chapter 7.1. The calculation was applied to the training dataset (“success rate”) as 
well as to the test dataset (“prediction rate”). 

The modelling strategy (i.e. which parameter maps were kept in the further modelling 
steps and which of the maps were rejected) was based on the results of the 
validation. The strategy was based on the combined assessment of the validation 
results of both the LR and the WoE modelling and is described in Chapter 7.3.2. 

The results of the validation are summed up in Tab. 7.4.2.1-1. 

Generally the LR modelling results are characterized by a much better differentiation 
between high and low susceptibilities than the WoE modelling which appears in a 
low number of pixels situated in the medium part of the susceptibility spectrum. This 
is expressed by a low portion of yellow areas in the maps (Fig. 7.4.2.1-5 to 7.4.2.1-7 
and 7.4.2.2-1 to 7.4.2.2-2).  

 

7.4.2.1. Modelling Results using Parameter Maps of Low Processing Effort  

 “Level low” parameter maps are generated by means of simple, standard methods 
(cf. Fig. 6.2-1). Based on different combinations of these parameter maps 32 
modelling runs were calculated. The list of model runs calculated with LR is the same 
as with WoE – thus the modelling procedure and the included parameter maps can 
be followed by Tab. 7.3.2.1-1. 

The modelling runs were started with some very simple combinations of parameter 
maps taking into account only a few basic parameters (runs 1, 2 and 3). The 
exchange of Wald_DKM_lg_mb by Wald_Sat_lg_mb only resulted in very low 
improvements of the validation results. Nevertheless, during further progress of the 
modelling Wald_Sat_lg_mb was kept assuming that this dataset presented higher 
relevance than the data of the Digital Cadastral Map (expert knowledge). 

After involvement of the influence of the road network the validation results show a 
significant improvement of both success and prediction rates (> 90 % for prediction 
rates, cf. Tab. 7.4.2.1-1)  

In the following modelling runs parameters connected to subsurface flow 
(Flowaccumulation, QDisp) were involved. As based on the field investigations, 
subsurface flow was rated to be highly relevant from the process-oriented point of 
view by the involved experts, such maps were kept in the further modelling 
procedure despite the fact that the results of the validation were not improving 
significantly compared to run 3. 

The susceptibility maps derived from runs 5 and 6 are shown in the Fig.s 7.4.2.1-5. 
and 7.4.2.1-6. 
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Tab. 7.4.2.1-1: Results of Validations of Modelling Runs calculated with Logistic Regression 
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In run 10 the first parameter map considering geological / pedological aspects was 
involved (Sub_GK_lg) which lead to only a marginal improvement compared to run 6. 
The involvement of Sub_GK_lg in run 11 as well did not show any significant 
difference compared to run 2. Nevertheless based on additional expert-knowledge 
this parameter map was kept in the further modelling steps.  

Run 13 was a test run without any forest map and resulted in a significant worsening 
of the validation results. 

The cumulated Chung & Fabbri as well as the ROC-curves of runs 1 to 13 are 
presented in Fig. 7.4.2.1-1 to 7.4.2.1-4 showing clearly (1) the bad result of run 13 
(without any involvement of forest maps) and (2) the good results and the strong 
grouping of all the remaining runs. 
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Predictionrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13    
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Fig. 7.4.2.1-1: Cumulated Chung & Fabbri curves of runs 1 to 13 (predictionrate) 

Successrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13    
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Fig. 7.4.2.1-2: Cumulated Chung & Fabbri curves of runs 1 to 13 (successrate) 
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Predictionrate: Run 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
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Fig. 7.4.2.1-3: Cumulated ROC curves of runs 1 to 13 (predictionrate) 
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Fig. 7.4.2.1-4: Cumulated ROC curves of runs 1 to 13 (successrate) 
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Fig. 7.4.2.1-5: Result of LR modelling run 5 
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Fig. 7.4.2.1-6: Result of LR modelling run 6 
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Fig. 7.4.2.1-7: Result of LR modelling run 14a 
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Runs 14a and 14b are variations of run 10 including Sub_GK_lg with different 
subsurface flow parameter maps. The validation results are very similar to those of 
run 10. The susceptibility map derived from run 14a is shown in Fig. 7.4.2.1-7. 

Run 15 adds Sub_GK_lg to the parameters involved in run 3 resulting in more or less 
the same validation results (with prediction rates of Chung & Fabbri and ROC 
method > 90 % AUC).  

Run 16 which does not consider the influence of the road network results in 
significantly lower AUC values. 

The following modelling runs tested different derivatives of the subsurface flow, partly 
involving the distribution of precipitation (run 20, run 23, and run 28). Highest AUC 
values of both success and prediction rates (> 90 % for prediction rates, cf. Tab. 
7.3.2-1) are calculated with results of run 20.  

Runs 29 to 32 are calculated using regionalisation data (Wald_DKM_lg, 
Wegenetz_lg) instead of field-based datasets. This replacement results in a 
significant decrease of all calculated validation indices. 

For visualisation of differences of particular modelling runs maps of differences were 
calculated. In the following examples negative differences between the two 
considered maps are displayed in red (higher susceptibility in the second map than 
in the first map), positive differences are displayed in blue (higher susceptibility in the 
first map than in the second map). 

In the example shown in Fig. 7.4.2.1-8 the parameter map Wegenetz_lg_mb 
additionally is involved in the second run (run 3) compared to the first run (run 2). 
The influence area of the road network is characeterized by significantly higher 
landslide susceptibility resulting in negative differences. This effect is by far not as 
distinct as in the WoE modelling method (Fig 7.3.2.1-8) which can be ascribed to the 
complex coupling of regression coefficients in the LR method compared to the 
additive approach of the WoE method. On the other hand high portions of the test 
area are characterized by blue colours representing high positive differences, 
showing that after involvement of Wegenetz_lg_mb in run 3 lower susceptibilities are 
modelled in these areas. 

Differences between run 9 and run 10 (Fig. 7.4.2.1-9) clearly display the geological 
situation in the western part as Sub_GK_lg is added in run 10. Again this effect is 
much flattened compared to the WoE approach (cf. Fig 7.3.2.1-10). Differences 
generally are very small pointing out the low impact of Sub_GK_lg on the modelling 
result. 
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Fig. 7.4.2.1-8: Map of differences between LR run 2 and 3 

 

Fig. 7.4.2.1-9: Map of differences between LR run 9 and 10 
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The use of the regression technique allows a sensitivity analysis to be based on the 
magnitude of the regression coefficients. Standardized regression coefficients are 
used as sensitivity measures since the standardization process removes the effect of 
units and places all parameters on a comparable level (Hamby 1994). Their values 
are scaled in the range of -1 to 1. The sign of the standardized regression 
coefficients indicates the direction of change of the response function with respect to 
the direction of change in the input. In other words, the simulation model is more 
sensitive to the parameters that have larger-magnitude standardized regression 
coefficients in the regression equation. The coefficients are indicative of the amount 
of influence the parameter has on the model as a whole. 

The coupling of regression coefficients is demonstrated by the example shown in 
Fig. 7.4.2.1-10. By adding the stabilizing influence of Waldsat_lg_mb in run 10, the 
destabilizing influence of HN_DHM10 as well as VW_DHM10 increases significantly 
compared to run 13. 

Sensitivity based on standardized regression coefficients

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

W
ald

sa
t_

lg
_m

b

H
N
-D

HM
10

VW
-D

H
M

10

W
ege

net
z_

lg
_m

b

Q
D
is

p_
lg

_G
K
_l

h_f
a

Sub_G
K_lg

s
ta

n
d

a
rd

iz
e

d
 r

e
g

re
s

s
io

n
 c

o
e

ff
ic

ie
n

t

Run 10

Run 13

 

Fig. 7.4.2.1-10: Sensitivity of independent variables of run 10 compared to run 13 

 

A second interesting example is given in Fig. 7.4.2.1-11 comparing runs 3 and 5. By 
adding QDisp_lg_GK_lg_fa in run 5 which exerts only a very low destabilizing 
influence on the dependent variable, the destabilizing influence of VW_DHM_10 
decreases significantly whereas the destabilizing influence of HN_DHM_10 
increases marginally. 
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Sensitivity based on standardized regression coefficients
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Fig. 7.4.2.1-11: Sensitivity of independent variables of run 3 compared to run 5 

 

7.4.2.2. Modelling Results using Parameter Maps of High Processing Effort  

 “Level high” parameter maps are generated by advanced, higher developed 
methods with higher expenditure (cf. Fig. 6.2-1). Based on different combinations of 
these parameter maps 32 modelling runs were calculated. In general the list of 
model runs calculated with LR is the same as with WoE (refer to Tab. 7.3.2-3). One 
additional run was added at the end of the modelling procedure (run 73).  

Runs 33 and 34 involve BK as geological / pedological oriented parameter map for 
the first time. In contrast to the WoE approach no significant change can be 
registered at all compared to the consideration of Sub_GK_lg. Generally the 
validation indices are very high with prediction rates > 91 % AUC. 

Runs 35 and 36 aim at the evaluation of Wald_Sat_lh. With regard to the 
consideration of Wald_DKM_lg the validation did not reproduce any improvements 
despite much higher processing efforts. This finding is ascribed to the fact that a lot 
of information supposed to be relevant for the triggering of shallow landslides was 
lost by the aggregation process (cf. section 5.3). 

The involvement of different parameter maps with regard to hydro(geo)logy (e.g. runs 
41 and 42 or 43 and 43a or 47 and 48) generally does not change the validation 
indices significantly although the susceptibility patterns do show differences. This 
issue which obviously is related to the applied validation methods is addressed in 
section 7.1. 

The involvement of Sub_GK_lh in runs 43 and 43a produces some improvements of 
the validation results (approx. 1,1 % AUC). Compared to modelling with Sub_GK_lg 
instead of Sub_GK_lh the validation indices do not change significantly. The 
susceptibility map based on run 43a is shown in Fig. 7.4.2.2.1. 
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Following the general modelling strategy, the selected “best” results (selected by joint 
evaluation of WoE and LR modelling) both “level low” (run 10) and “level high” (run 
43a) were recalculated with one of the parameter maps replaced. In general, this 
procedure did not result in any significant improvements of the validation indices.  

Run 58 for the first time involves the parameter map NS_lh. Compared to run 43a 
without any map related to precipitation the prediction rates improve by approx. 1,5 
% AUC. Similar improvements are noticed compared to run 64 applying NS_lg 
instead of NS_lh. Run 58 consequently represented the best validation indices of the 
LR “level high” modelling phase with with prediction rates between 92 and 93 % 
AUC. The susceptibility map derived from run 58 is shown in Fig. 7.4.2.2-2. 

Runs 71 and 72 are calculated using regionalisation data (Wald_DKM_lg, 
Wegenetz_lg) instead of field-based datasets. Equal to the effect observed at the 
“level low” modelling, this replacement results in a significant decrease of all 
calculated validation numbers (approx. 7 to 8 % AUC). 

Compared to the WoE approach one extra run was calculated with the LR method. 
As the “level high” calculations using Wegenetz_lh did not consider the field data as 
represented in Wegenetz_lh_mb, in run 73 this dataset was considered to evaluate 
its influence. In comparison to run 58 where Wegenetz_lg_mb was involved instead 
the validation results marginally changed for the worse indicating that no 
improvement of the modelling result can be ascribed to the higher processing effort.  
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Fig. 7.4.2.2-1: Result of LR modelling run 43a 
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Fig. 7.4.2.2-2: Result of LR modelling run 58 
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Additionally some runs showing the best validation indices and involving NS_lh (run 
58, 66 and 67) were recalculated with the scenario of uniform precipitation 
(arithmetic mean of the realistic precipitation as presented in NS_lh) to exclude 
influences caused by the specific precipitation pattern of the August 2005 event. 
These runs were named 58mc, 66mc and 67mc, the “mc” standing for “mean case”. 

The typical pattern of differences between run 58 and run 58mc is visualized in a 
difference map in Fig. 7.4.2.2-3. Positive deviances originating from lower 
susceptibilities in the “mc”-scenario mainly show up in the southeastern part of the 
test area where, according to NS_lh (cf. Chapter 5.5), precipitation was higher than 
average. Negative deviances can be registered in the western and northern part of 
the test area. 

 

Fig. 7.4.2.2-3: Map of differences between LR run 58 and 58mc 

 

The cumulated Chung & Fabbri - curves of runs 43a, 58mc, 63, 66mc and 67mc are 
presented in Fig. 7.4.2.2-4 and 7.4.2.2-5 showing the extraordinary strong grouping 
of the curves with regard to both datasets. Nevertheless it has to be stated that the 
“mc”-scenarios do not represent the specific environmental situation of the triggering 
event which means that the validation of these runs is adulterated to some extent. 
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Predictionrate: Run 43a, 58mc, 63, 66mc, 67mc    
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Fig. 7.4.2.2-4: Cumulated Chung & Fabbri curves of runs 1 to 13 (predictionrate) 

Successrate: Run 43a, 58mc, 63, 66mc, 67mc    
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Fig. 7.4.2.2-5: Cumulated Chung & Fabbri curves of runs 1 to 13 (successrate) 
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7.4.2.3. Modelling Results using Process Oriented Combination of Parameter 

Maps 

Besides the systematic modelling following the general approach as described in 
Chapter 6.2 and the validation results some runs were calculated under specific 
consideration of expert knowledge of the Geological Survey. Whereas run 26 only 
involves “level low” parameter maps, runs 27 and 28 as well as runs 69 and 70 
consider at least one “level high” parameter map. 

Following the validation indices the results of these modelling runs do not show any 
significant differences compared to the systematic modelling. However, it has to be 
noticed that the number of adequate modelling runs based on expert knowledge has 
been too low to confirm this conclusion definitely. 

 

7.4.2.4. Comparison of Results of different Processing Levels 

As is shown in Chapter 11 and in the Annex (Tab. A5) the single replacement of one 
“level low” parameter map by the adequate “level high” parameter map in most cases 
does not result in a significant improvement of the validation indices (> 1 % AUC). 

However, the cumulative estimation of the involvement of “level high” parameter 
maps by calculating the arithmetic means of the validation indices (only runs without 
regionalisation datasets were taken into account) shows a notable improvement of 
most “level high” validation indices compared to the “level low” results (Tab. 7.4.2.4-
1). Although this result has to be interpreted with reservations because of the general 
modelling approach (e.g. identification of best parameter combination and further 
calculation based on this selection) the conclusion can be drawn that by combination 
of several “level high” parameter maps tentatively better results can be achieved. 

 

Tab. 7.4.2.4-1: Arithmetic means of validation indices of “level low” and “level high” modelling runs 

 Probability ROC (AUC) Chung/Fabbri (AUC) 

level low (n = 28) 

Successrate 77,57 % 85,53 % 85,10 % 

Predictionrate 85,94 % 90,10 % 89,98 % 

level high (n = 19) 

Successrate 77,83 % 86,68 % 86,21 % 

Predictionrate 87,99 % 91,66 % 91,41 % 

 

Aiming at getting an impression of the local differences between the “level low” and 
the “level high” modelling runs the five best results of the “level low” modelling stage 
were selected according to the joint assessment of the validation indices of both the 
WoE and the LR modelling method. The selected modelling runs are 5, 6, 14a, 23mc 
and 24. To create a common susceptibility map of these five runs the mid-range 
value was calculated. The same procedure was followed using the “level high” 
results of runs 43a, 58mc, 63, 66mc and 67mc.  
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The differences between the two resulting maps were calculated and are presented 
in Fig. 7.4.2.4-1. Generally differences – positive as well as negative – are 
significantly lower than in the WoE approach (cf. Fig. 7.3.2.2-7) This is also due to 
the fact that instead of the real precipitation pattern the “mean case” scenarios were 
used for the results of runs 23, 58, 66 and 67. The remaining differences can mainly 
be ascribed to the different involvement of the geology-related parameter maps: in 
the five best results of the “level low” modelling stage three runs involve Sub_GK_lg 
whereas in the five best results of the “level high” modelling stage Sub_GK_lh is 
involved in most cases and BK is involved in two runs. 

 

Fig. 7.4.2.4-1: Map of differences between LR best five maps of “level low” modelling stage and LR 

best five maps of “level high” modelling stage 

 

7.5. Modelling and Validation of Landslide Susceptibility 
Maps by means of Deterministic Modelling by SINMAP (JR)  

Physically based models are useful in that they allow for relatively fine scale hazard 
mapping (Pack et al. 1998, Pack et al. 2005) and tend to be less site specific than 
multivariate statistical analyses (Montgomery and Dietrich, 1994). Information on 
geotechnical parameters is necessary in order to use this approach. Given the 
complexity of geotechnical conditions in slopes, deterministic methods are unreliable 
unless calibrated by correlating with a landslide inventory (Fell et al. 2008).  
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Despite problems related to the collection of sufficient input data, physically based 
models are increasingly used in hazard analysis even over large areas (e.g. Lan et 
al. 2003, Fowze et al. 2007, Kuthari 2007, Thiebes et al. 2007, Sulaiman & Rosli 
2010). They are applicable only when the landslide types are restricted to shallow 
translational ones. The advantage of these “white box models” is that they have a 
physical basis. The information about the stability of a slope is expressed in terms of 
its factor of safety. However, these safety factors should never be used as absolute 
values - they are only indicative and can be used to test different scenarios (Pack et 
al. 2005). The calculated safety factor may as well be established in a GIS and the 
results referred to susceptibility.  

In this work the SINMAP 2.0 (Stability Index MAPping) software created by Pack et 
al. (2005) was used for deterministic modelling. SINMAP 2.0 is an ArcGIS 9.0 plug-in 
that implements the computation and mapping of a slope stability index based upon 
geographic information, primarily digital elevation data. SINMAP is grid based, 
requiring ArcGIS version 9.0 or higher.  

The use of the SINMAP approach is supported by the following arguments (Arpa 
Piemonte 2005): 

� it is consolidated and universally accepted; 

� it is easy to implement and requires knowledge of only a small number of 
parameters; 

� it provides results which are acceptable in relation to the low costs involved 
and the data required; 

� it provides results which are sufficiently valid for processes linked to long-
lasting meteorological events. 

 

7.5.1. Basic Principles 

Montgomery and Dietrich (1994) first combined a contour-based steady-state 
hydrologic model with the infinite slope stability model, that balances the destabilizing 
components of gravity and the restoring components of friction and cohesion on a 
failure plane parallel to the ground surface with edge effects neglected, to define 
slope stability classes based upon slope and specific catchment area.  

The SINMAP approach is similar to that of Montgomery and Dietrich in that it 
combines steady-state hydrologic concepts with the infinite slope stability model. It 
has its theoretical basis in the infinite plane slope stability model with wetness (pore 
pressures) obtained from a topographically based steady state model of hydrology. 
Digital elevation model (DEM) methods are used to obtain the necessary input 
information (slope and specific catchment area).  

The SINMAP approach is based on the following hypotheses: 

� infinite slope 

� even surface of failure parallel to the slope and situated at the contact of the 
altered near-surface strata and the bedrock  

� soil strength criteria (Mohr-Coulomb) expressed in terms of effective stresses 

� steady-state flow parallel to the slope  
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� no significant deep drainage and no significant flow in the bedrock 

SINMAP derives its terrain stability classification from inputs of topographic slope 
and specific catchment area and from parameters quantifying material properties 
and climate (primarily a hydrologic wetness parameter). 

Following Hammond et al. (1992) the infinite slope stability model factor of safety 
(ratio of stabilizing to destabilizing forces) is given by (simplified for wet and dry 
density the same) 

 

           (1) 

 

Cr root cohesion  

Cs  soil cohesion  

θ slope angle 

ρs saturated bulk density of the soil 

ρw density of water 

g acceleration due to gravity 

D vertical soil depth 

Dw vertical height of the water table within the soil layer 

Φ internal friction angle of the soil 

 

The SINMAP approach with the hydrologic model is to interpret the soil thickness as 
specified perpendicular to the slope, rather than soil depth measured vertically. 

With this change FS reduces to: 

 

           (2) 

 

where  w = Dw/D = hw/h   is the relative wetness 

C = (Cr + Cs) / (h ρs g)  is the combined cohesion made dimensionless 
relative to the perpendicular soil thickness  

  r = ρw / ρs   is the water to soil density ratio. 

 

Cohesion (due to soil and root properties) is combined with the soil density and 
thickness into a dimensionless cohesion factor, C (the relative contribution to slope 
stability of the cohesive forces). With the form of equation (2) it is assumed that the 
soil thickness (perpendicular to the slope) is constant. 

Pore water pressure is computed assuming a hydrologic steady state with depth of 
saturated soil computed sufficient to sustain a lateral discharge proportional to the 
specific catchment area (the upslope area per unit contour length). The parameter 
“specific catchment area” is tied closely to recent hydrologic models that represent 
runoff generation by saturation (e.g. TOPMODEL, Beven and Kirkby 1979).  

Detailed mathematical derivations of the theory are provided by Pack et al. (2005). 
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7.5.2. Parameterisation and Calibration 

The data required to implement the theory include properties that can be highly 
variable in both space and time. These parameters are allowed to be uncertain 
following uniform probability distributions between specified lower and upper limits 
which may be adjusted (and calibrated) for geographic “calibration regions” based 
upon soil, vegetation or geological data. 

Required parameters are:  

� T/R (lower bound): lower bounding value for the ratio of soil transmissivity 
(hydraulic conductivity times soil thickness) to the effective steady state 
recharge rate [m]. 

� T/R (upper bound): upper bounding value for the ratio of transmissivity to the 
effective recharge rate [m]. 

� Dimensionless Cohesion C (lower bound): lower bounding value for both root 
and soil cohesion. 

� Dimensionless Cohesion C (upper bound): upper bounding value for both root 
and soil cohesion. 

� Phi [°] (lower bound): lower bounding value of the soil friction angle. 

� Phi [°] (upper bound): upper bounding value of the soil friction angle. 

� Soil Density [kg/m3]. 

The ratio T/R, which has units of [m], quantifies the soil’s capacity for lateral drainage 
of water in relation to the relative wetness in terms of assumed steady state 
recharge. Although the term ‘steady state’ is used, the quantity R is not a long term 
(e.g. annual) average of recharge. Rather it is the effective recharge for a critical 
period of wet weather likely to trigger landslides. The ratio T/R, which is treated as a 
single parameter, therefore combines both climatic and hydrogeological factors.  

C is a dimensionless combined root and soil cohesion factor in relation to the 
perpendicular soil thickness and density. This may be thought of as the ratio of the 
cohesive strength relative to the weight of the soil, or the relative contribution to slope 
stability of the cohesive forces (Dixon 2008). 

The spatial database of the modelling was the DEM provided by the Austrian Federal 
Office for Metrology and Surveying (BEV) with a 10 m resolution. The SINMAP 
software automatically creates six grids from digital DEM data: pit-filled DEM, slope, 
flow direction, contributing area, saturation, and stability index. In addition to grid 
data, point data for landslides are required if the user wants to compare locations of 
predicted instability with areas of actual instability (Pack et al. 2005).  

SINMAP also generates a slope-area chart (‘S-A Plot’) of study area data to aid in 
parameter calibration. The plot shows the relationship between contributing areas 
and groundslope and is generated by SINMAP routines (which do not work in 
ArcGIS 10). S-A Plots of the study area data are illustrated in Fig. 7.5.2-1 – 7.5.2-8. 
Four types of information are shown on the S-A Plot: 

1. Normal cell data. Specific catchment area versus slope is plotted for a limited 
sampling of grid cell points across the study area that does not have 
landslides. 

2. Landslide cell data. Landslides are plotted based upon the slope and specific 
catchment area values of the cell in which each landslide point lies. 
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3. Stability index region lines. These five lines provide boundaries for regions 
within slope-specific catchment area space that have similar potential for 
stability or instability. 

4. Saturation region lines. These three lines provide boundaries for regions 
within slope-specific catchment area space that have similar wetness 
potential. 

 

   

 

 

 

   

 

 

Fig. 7.5.2-1: S-A Plot of calibration region BK2  

/ non-forest with parameter settings of run V1 

Fig. 7.5.2-2: S-A Plot of calibration region BK2 / 

forest with parameter settings of run V1 

Fig. 7.5.2-3: S-A Plot of calibration region BK3 / 

non-forest with parameter settings of run V1 

Fig. 7.5.2-4: S-A Plot of calibration region BK3 / 

forest with parameter settings of run V1 
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The geometric points (blue rhombi) represent landslide locations. The single points 
represent a random selection of points within the calibration region. The slope and 
contributing areas are generated from the DEM. The vertically oriented curves are 
the breaks between stability index areas. 

� Points to the left of the SI line of 1.5 are in the stable region. 

� Points between 1.5 and 1.25 SI lines fall into the moderately stable region. 

� Points between the 1.25 line and the 1.0 line fall in the quasi-stable region. 

� Points between the 1.0 and the 0.5 line fall into the lower threshold region. 

� Points between the 0.5 and the 0.0 line fall into the upper threshold region. 

� Points to the right of the 0.0 line fall into the defended region. 

Fig. 7.5.2-5: S-A Plot of calibration region Sub14 / 

non-forest with parameter settings of run V1 

Fig. 7.5.2-7: S-A Plot of calibration region Sub23 / 

non-forest with parameter settings of run V1 

Fig. 7.5.2-6: S-A Plot of calibration region Sub14 / 

forest with parameter settings of run V1 

Fig. 7.5.2-8: S-A Plot of calibration region Sub23 / 

forest with parameter settings of run V1 
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The location of the 1.0 SI line is controlled by the lower bounds of the C and Phi 
parameters. The location of the 0.0 SI line is controlled by the upper bounds of the C 
and Phi parameters. The area between the 0.0 SI line and the 1.0 SI line represents 
the uncertainty associated with the parameter (Dixon 2003). 

Horizontal lines represent the wetness which is controlled by the T/R calibration 
parameter. All points above the upper line are saturated. 

The position of the upper line is controlled by the upper bounds of the T/R ratio. In 
this study the upper bounding of the T/R values was set equal to the lower bounding 
values thus defining saturated conditions, which implies that the water reached the 
soil surface at the time of slope failure. The lower line represents 10 percent 
wetness. 

Calibrating the input parameters to the landslide points involves shifting the lines of 
the SA plot to fit the landslide occurrence by changing the upper and lower 
boundaries of the input parameters. A stability index of 1.0 may be interpreted as a 
factor of safety. Very few landslides should occur to the left of the 1.0 line since the 
factor of safety is >1.0. The calibration results thus in “capturing” a high proportion of 
observed landslides in regions with low stability index, while minimizing the extent of 
low stability regions and consequent attribution of terrain to regions where landslides 
have not been observed (Dixon 2003). 

Model runs were based on two different versions with regard to the definition of 
geographic calibration regions. 

1. The parameter map “Sub_GK_lg” (Geological basic disposition „level low“ 
based on conceptual soil map “level low” (ref. to section 5.1.), 4 final classes 
after elimination of original class Sub100 – alluvial deposits, no landslides) 
was combined with the parameter map “Wald_Sat_lg” (Forest “level low“ 
based on Satellite Data, 2 classes) resulting in 8 classes. 

2. The parameter map “BK” (Basic disposition based on Soil Map (ref. to section 
5.2.), 3 final classes after merging original classes 3 and 4) was combined 
with the parameter map “Wald_Sat_lg” (Forest “level low“ based on Satellite 
Data, 2 classes) resulting in 6 classes. 

Calibration of C and Φ was based on S/A plots. An overview of the parameters 
applied for the defined calibration regions is given in Tab. 7.5.2-1 and 7.5.2-2. 

The hydrological parameters (T/R ratio) were set to saturated conditions, which 
implies that the water reached the soil surface at the time of failure. The T-values 
were estimated according the range of saturated conductivity suggested for the 
studied soil types dominated by fine-grained particles (sand, silt, clay, ref. to section 
5.1 and 5.2) and a uniform value of 1 m as soil thickness. These assumptions result 
in T-values of 0,15 – 0,2 m²/24h. The recharge (R-value) of the modelling run V1 was 
set to the event precipitation value of August 21st 2005 (approx. 125 mm/24 h, ref. to 
section 5.5 and Andrecs et al. 2007). These assumptions result in a T/R-value of 
1200 for the fine grained soil types (Sub23, Sub24; BK3) and 1500 for the less fine 
grained soil types (Sub13, Sub14; BK1, BK2). 

Two additional different climatic scenarios were modelled by variation of the R 
values, V2 representing lower precipitation (67 % of the August 2005 event - approx. 
85 mm/24 h), V3 showing a worst case scenario (150 % of the August 2005 event - 
approx. 185 mm/24 h).  
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With regard to landcover, scenarios were calculated by eliminating the influence of 
forested areas (stabilizing effects of root cohesion). 

 

Tab. 7.5.2-1: Parameter definition for calibration region regarding parameter map “Sub_GK_lg” (for 

description of substratum units please refer to  Chapter 5.1) 

 

1 lower bound 2 upper bound * non-forested ** forested 

 

Tab. 7.5.2-2: Parameter definition for calibration region regarding parameter map “BK” (for description 

of soil units please refer to Chapter 5.2) 

Calibration 

region C low1 C high2 Phi low1 [°] Phi high2 [°]

Soil Density 

[kg/m³]

BK1_nf* 0,05 0,2 18 32 1950

BK1_f** 0,2 0,4 16 30 1950

BK2_nf 0,1 0,2 16 30 1950

BK2_f 0,2 0,4 16 30 1950

BK3_nf 0,1 0,2 12 26 1950

BK3_f 0,2 0,2 12 24 1950  

1 lower bound 2 upper bound * non-forested ** forested 
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7.5.3. Modelling Results 

The most important output of the SINMAP software is the stability index (SI), the 
numerical value of which is used to classify the terrain stability at each grid location 
in the study area. Wetness Index (saturation) is also returned as a by-product of the 
stability index calculations. The stability index is defined as the probability that a 
location is stable assuming uniform distributions of the parameters over the 
uncertainty ranges defined by lower and upper bounds. This SI value ranges 
between 0 (most unstable) and 1 (least unstable). Where the most conservative 
(destabilizing) set of parameters in the model still results in stability, the stability 
index is defined as the factor of safety (ratio of stabilizing to destabilizing forces) at 
this location under the most conservative set of parameters. This yields a value 
greater than1. 

Tab. 7.5.3-1 gives an example of how stability classes may be defined in terms of the 
stability index (SI).  

Tab. 7.5.3-1: Definition of Stability Classes by Pack et al. (2005) 

 

 

The selection of breakpoints (1,5; 1,25; 1; 0,5; 0,0) is subjective, requiring judgement 
and interpretation in terms of the class definitions. In the example given by Pack et 
al. (2005) the terms ‘stable’, ‘moderately stable’, and ‘quasi-stable’ are used to 
classify regions that according to the model should not fail with the most 
conservative parameters in the parameter ranges specified. SI for these cases is the 
factor of safety that gives a measure of the magnitude of destabilizing factors (e.g. 
increased wetness due to road drainage, local loading, or local enhancement of pore 
pressures due to soil pipe effects) required for instability. The terms ‘lower threshold’ 
and ‘upper threshold’ are used to characterize regions where, according to the 
parameter uncertainty ranges quantified by the model, the probability of instability is 
less than or greater than 50 % respectively. External factors are not required to 
induce instability in these regions. Instability may arise simply due to a combination 
of parameter values within the bounds with which uncertainty and variability can be 
quantified. The term ‘defended slope’ is used to characterize regions where, 
according to the model, the slope should be unstable for any parameters within the 
parameter ranges specified. Where such slopes occur in the field they are held in 
place by forces not represented in the model, or the model is inappropriate, as in the 
case of bedrock outcrops. In the present study the selection of breakpoints and the 
definition of classes follows this example.  
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The results of the SINMAP modelling runs are shown in Fig. 7.5.3-1 to 7.5.3-12 for 
both approaches with regard to the definition of geographic calibration regions. The 
upper map represents the modelling result with the present forest cover, the lower 
map shows the scenario without stabilizing influence of root cohesion as defined by 
the C-values. From this comparison the high sensitivity with regard to the selected C-
values becomes evident. From the comparison of the maps based on “Sub_GK_lg” 
(Fig. 7.5.3-1 to 7.5.3-6) with maps based on “BK” (Fig. 7.5.3-7 to 7.5.3-12) the high 
dependency on the selection of basics for the definition of calibration regions 
becomes apparent. 

The maps present the landslides which were taken into account for the validation of 
the results as well. As the model is restricted to shallow translational movements only 
types 2 (landslide scar) and 3 (slope debris flow) were considered. To get a higher 
number of reference data, the 2nd category with regard to data quality was added to 
the original dataset thus integrating landslide sites triggered by events before and 
after August 2005 (“time-related test data with high quality”) and sites characterized 
by incomplete assignment of attributes (“test data with high quality”, ref. to section 
5.1). A final number of 420 landslides thus were taken into account for the calibration 
and validation operations. The only reasonable validation method is by calculating 
the ratio of landslides situated in areas defined by stability indices < 1,0. The 
respective values are shown in Tab. 7.5.3-2. 

 

Tab. 7.5.3-2: Results of SINMAP Validation  

 

 

This superficial validation indicates that the use of the base map “BK” improves the 
results by about 5 to 7 % compared to the base map “Sub_GK_lg”. 

Generally regions with high landslide densities are situated in areas classified as 
unstable in most cases. In addition some areas without any landslides are classified 
as unstable as well (e.g. in the western and in the north-eastern part of the test 
area). The most obvious reason for this misclassification may of course be the 
selection of the base maps defining the calibration regions. As described in sections 
5.1 – 5.5 a number of additional base maps coming into consideration for this task 
was created within the frame of this project (e.g. Wald_Sat_lh, QDisp_lh_fa_NS_lh, 
Sub_GK_lh, NS_lh). Due to limited resources the deterministic modelling building 
upon this basis could not be realised within the AdaptSlide project but has to be kept 
for further studies. 
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Fig. 7.5.3-1: Result of SINMAP Model run V1 (event August 2005) based on “Sub_GK_lg”  

 

Fig. 7.5.3-2: Result of SINMAP Model run V1 (event August 2005) based on “Sub_GK_lg” without 

forest effect 
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Fig. 7.5.3-3: Result of SINMAP Model run V2 (scenario low) based on “Sub_GK_lg”  

 

Fig. 7.5.3-4: Result of SINMAP Model run V2 (scenario low) based on “Sub_GK_lg” without forest 

effect 
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Fig. 7.5.3-5: Result of SINMAP Model run V3 (scenario high) based on “Sub_GK_lg”  

 

 

Fig. 7.5.3-6: Result of SINMAP Model run V3 (scenario high) based on “Sub_GK_lg” without forest 

effect 
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Fig. 7.5.3-7: Result of SINMAP Model run V1 (event August 2005) based on “BK”  

 

Fig. 7.5.3-8: Result of SINMAP Model run V1 (event August 2005) based on “BK” without forest effect 



AdaptSlide 235 

 

 

Fig. 7.5.3-9: Result of SINMAP Model run V2 (scenario low) based on “BK”  

 

Fig. 7.5.3-10: Result of SINMAP Model run V2 (scenario low) based on “BK” without forest effect 



AdaptSlide 236 

 

 

Fig. 7.5.3-11: Result of SINMAP Model run V3 (scenario high) based on “BK” 

 

 

Fig. 7.5.3-12: Result of SINMAP Model run V3 (scenario high) based on “BK” without forest effect 
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8. Comparisons of Results of Neural Networks and Logistic 

Regression (GBA, JR) 

The following discussion will contrast, and as far as possible compare the modelling 
results of the methods used in the AdaptSlide project, which were neural networks 
(Chapter 7.2) and logistic regression (Chapter 7.4). This comparison is made by 
means of the validation results that were obtained by taking into account the test 
data. Therefore direct comparison of statistic and deterministic modelling results is 
not  possible as the only reasonable validation method of the SINMAP modelling 
approach is by calculating the ratio of landslides situated in areas defined by stability 
indices < 1,0 (Chapter 7.5.3.). This data was used for validation of logistic 
regression, but it was applied to a limited extent only in the validation of neural 
networks due to the validation scheme used there (Chapter 7.2). The standard 
validation methods ROC and validation according to Chung & Fabbri (1999, Chapter 
7.1) were applied there. The weight-of-evidence method (Chapter 7.3) was excluded 
from this process, because direct comparison is impossible due to the different initial 
database (process data was purely pixel-based, environmental parameters were 
exclusively categorical). 

Because of the strategy used for successive parameter map integration (Chapter 
6.2), model runs with the same code numbers in many instances include different 
parameter combinations for the two methods used. For that reason, there was only 
comparison, on the one hand, of runs with the same parameter combinations, and 
on the other hand of the respective “best 5” results (Chapter 7.2. & 7.4) for “level low” 
and “level high” and the “best of all” results for the two methods. Hence, the latter are 
usually not based on results with the same parameter combinations. This fact, along 
with the observation stated several times before in this report that the summarized 
area-wide validation methods have their limitations, demonstrate the rather limited 
significance of the validation comparisons of the two modelling methods that will now 
be presented. 

Lastly, those final-result maps that were produced on the basis of an independent 
parameter map ‘precipitation’ (for example run 23), were additionally evened out with 
mean precipitation for the entire study area in order to obtain generally valid 
susceptibility maps that are independent of events. 
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8.1. Modelling Results using the “Level Low” Parameter Maps 

Comparison of the “level low” results 
Neural networks and logistic regression generally produce quite similar susceptibility 
maps in the “level low” runs, although logistic regression differentiates somewhat 
more strongly between high and low susceptibilities. The validation comparisons 
showed that the results of logical regression and neural networks, based on the 
validation methods used, could be considered “equally good” to “slightly better in the 
case of neural networks.” However, due to the limited significance of the 
comparisons (for example summarized area-wide validation), neither of the two 
models can be definitely favoured. The uncertainties in the final results obtained from 
the five best susceptibility maps are generally very minor for both models, and when 
compared, more or less equally minor. 
 
The comparisons of the results obtained with neural networks and logistic regression 
using the same parameter combinations show that the susceptibility maps generated 
exhibit quite similar susceptibility distributions. As an example of the “level low” 
results, the susceptibility map for run 10, which was calculated using neural networks 
(Fig. 7.2.2.1-8), is now compared to the susceptibility map calculated from run 14a 
(Fig. 8.1-1) by means of logistical regression. Both runs were calculated with the 
same parameter combination. The similarity of the two maps with respect to the 
distribution of susceptibility classes is readily visible, and it can also be seen that 
logistic regression differentiates rather more strongly between high and low 
susceptibilities.  

This is particularly obvious in Fig. 8.1-2, which shows the difference map for the two 
susceptibility maps. This map exhibits quite small differences in many areas, most 
values lying between -0.02 and +0.1. Negative differences (red), which show higher 
values for logistical regression, most often appear in areas of higher susceptibility 
(valley areas and lower slope areas), whereas positive differences (blue), i.e. higher 
values for neural networks, occur predominantly in areas of lower susceptibility. This 
in turn verifies the stronger differentiation by logistical regression. These statements 
apply to most comparisons of results obtained using the two methods within “level 
low” results. 



AdaptSlide 239 

 

 
Fig. 8.1-1: Susceptibility map of run 14a (logistic regression) 

 

 
Fig. 8.1-2: Difference between map of neural network (run 10) – map of logistic regression (run 14a) 

 

Tab. 8.1-1 shows the comparison of the validation measured values  (AUC of ROC 
and Chung & Fabbri 1999) of the “level low” runs for both modelling methods, as well 
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as their differences. Therefore the results of all runs that had the same parameter 
combinations for both methods were used. The differences in the runs corresponding 
to the validation measured values are positive (black) when there is better model 
performance with neural networks, and negative (green) when there is better model 
performance with logistic regression.  

Viewing these differences it is evident that they are usually positive, however quite 
small, so that model performance with logistic regression and neural networks can 
generally be described as good. In the interest of a better overview, the differences 
that exceed the threshold value for equally good model performance (Chapter 7.2.1) 
are printed in bold. When using the method-specific threshold values for the Chung 
& Fabbri method (1999), the results for both models can be described overall as 
“equally good,” whereas when using the ROC method, the neural network results 
tend to be slightly better. That picture is also seen when considering the mean 
differences for all of these results (Tab. 8.3-1): at +0.65% with the ROC method, it is 
in the region of the threshold value, which indicates slightly better model 
performance with neural networks, whereas at +0.44% with the method according to 
Chung & Fabbri (1999), it is below the threshold value, which indicates equally good 
model performance for both methods. 
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Tab. 8.1-1: Validation measured values (AUC) of the test data for “level low” runs with the same 

parameter combination of logistical regression and neural networks, as well as their differences 

 Logistic Regression Neural Network Difference NN-Log Reg 

Run ROC 
Chung & 
Fabbri  

ROC  
Chung & 
Fabbri  

ROC 
Chung & 
Fabbri  

1 88.60% 88.63% 89.03% 88.70% 0.43% 0.08% 

2 88.70% 88.75% 89.11% 89.05% 0.41% 0.30% 

3 91.40% 91.25% 91.77% 91.59% 0.37% 0.34% 

4 91.10% 90.84% 91.65% 91.23% 0.55% 0.39% 

5 90.80% 90.61% 91.64% 91.26% 0.84% 0.65% 

6 90.70% 90.55% 91.52% 91.17% 0.82% 0.62% 

10 LR, 14a NN 90.70% 90.57% 91.67% 91.36% 0.97% 0.79% 

11 88.80% 88.83% 89.49% 89.04% 0.69% 0.21% 

14a LR, 10 NN 90.80% 90.62% 91.68% 91.34% 0.88% 0.72% 

15 91.50% 91.31% 92.13% 91.77% 0.63% 0.46% 

21 90.80% 90.61% 91.62% 91.24% 0.82% 0.63% 

22 90.70% 90.56% 91.75% 91.42% 1.05% 0.86% 

23 90.70% 90.49% 91.25% 90.87% 0.55% 0.38% 

24 91.00% 90.78% 91.89% 91.53% 0.89% 0.75% 

25 91.00% 90.77% 91.86% 91.52% 0.86% 0.75% 

26 90.80% 90.65% 90.63% 90.30% -0.17% -0.35% 

27 90.90% 90.69% 90.10% 89.85% -0.80% -0.84% 

31 80.10% 80.34% 82.02% 81.52% 1.92% 1.18% 

 

A similar situation is seen when considering the best 5 “level low” results (which for 
logistical regression and neural networks are comprised of runs with the same 
parameter combinations in both cases, Tab. 8.1-2). Here too there are very slight 
positive differences, the threshold value for the method according to Chung & Fabbri 
(1999) never being exceeded, which indicates equally good results. On the other 
hand, the threshold value of the ROC method is exceeded almost everywhere. The 
same applies to the average differences with +0.80% for the ROC method and 
+0.62% for validation according to Chung & Fabbri (1999, Tab. 8.3-1). This validation 
comparison therefore demonstrates that neural networks show somewhat better 
model performance. 

Tab. 8.1-2: Measured validation values (AUC) for the test data of the “best 5”–“level low” runs with 

logistic regression and neural networks, as well as their differences 

 Logistic Regression Neural Network Difference NN-Log Reg 

Run ROC 
Chung & 
Fabbri 

ROC  
Chung & 
Fabbri  

ROC  
Chung & 
Fabbri  

5 90.80% 90.61% 91.64% 91.26% 0.84% 0.65% 

6 90.70% 90.55% 91.52% 91.17% 0.82% 0.62% 

14a LR, 10 NN 90.80% 90.62% 91.68% 91.34% 0.88% 0.72% 

23 90.70% 90.49% 91.25% 90.87% 0.55% 0.38% 

24 91.00% 90.78% 91.89% 91.53% 0.89% 0.75% 

 

Even though there are only very minor differences in validations of results within 
individual modelling methods, and therefore no unequivocally best result could be 
cited, one result, the best validation value from the test data in purely mathematical 
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terms, was nevertheless selected for each method, and these two results were then 
compared. For both methods, this was the result of run 24. The result for neural 
networks was also somewhat better in this validation comparison for a single result 
(Tab. 8.1.-1 and 8.3-1).  

Generally, therefore, the validation comparisons of “level low” results can be 
considered “equally good” to “slightly better with neural networks.” However, as 
explained above, due to limited significance of these results, neither of the two 
models can be clearly favoured. 

As seen in both this chapter and in the analyses of results of neural networks and 
logistic regression (Chapter 7.2 & 7.4), the validation results of many runs were very 
similar, and thus no single and clearly best “level low” result could be chosen. The 
“best 5”–“level low” results were therefore combined into a common final result for 
the “level low” runs. This was done for the results of both neural networks and logistic 
regression by means of cell-specific calculation of mean susceptibility based on the 
respective maximum and minimum (= mid-range). Because the uncertainty that 
arises from the range of these “best 5”–“level low” results must also be taken into 
account, this uncertainty was also cell-specifically stated (for detailed discussion, see 
Chapter 8.4).  

This common final result for the “best 5”–“level low” runs is now shown for neural 
networks in the form of the mid-range and the range in Fig. 8.1.-3 and 8.1-4 
respectively. Presented in contrast to that is the final result of the “best 5”–“level low” 
runs for logistic regression, with the corresponding maps in Fig. 8.1-5 and 8.1-6. 
Because the maps of the two modelling methods were produced using the same 
parameter combinations, the maps for neural networks and logistic regression are 
also directly comparable. A comparison of the two maps of the mid-range again 
shows that the susceptibility maps for both methods exhibit quite similar susceptibility 
distributions, the map for logistic regression once again showing somewhat stronger 
differentiation between the higher and lower susceptibilities.  

The modelling uncertainty is quite similar for both models, as can be seen from the 
range-maps. A major share of the cells in both maps therefore display ranges in the 
region of <0.1, which is very small. A comparison of the two maps shows that the 
ranges of logistic regression, at an average of 0.026, are smaller than those of neural 
networks at 0.040, however the maximum range of 0.55 with logistic regression is 
obviously higher than that of neural networks at 0.30. The two modelling methods 
are thus probably comparable with regard to the uncertainty of the „level low“ final 
result.  
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Fig. 8.1-3: “Best 5”–“level low” map (mid-range) generated by neural networks 

 

 

Fig. 8.1-4: Uncertainty – “level low” map (range) generated by neural networks 
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Fig 8.1-5: “Best 5”–“level low” map (mid-range) generated by logistic regression 

 

Fig 8.1-6: Uncertainty – “level low” map (range) generated by logistic regression 
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8.2. Modelling Results using the “Level High” Parameter Maps 

Comparison of “level” results  
In the “level high” runs, neural networks and logistic regression generally produce 
quite similar susceptibility maps, with logistic regression differentiating somewhat 
more strongly between high and low susceptibilities. The validation comparisons 
showed that the results of logistic regression and neural networks could be assessed 
as “equally good” based on the validation methods used. The uncertainties in the 
final results seen in the 5 best susceptibility maps produced using both models 
cannot be compared here due to the different parameter maps employed. 

The comparison of the “level high” runs also showed (analogously to the “level low” 
runs) that the susceptibility maps for neural networks and logistic regression 
exhibited quite similar susceptibility distributions with the same parameter 
combinations. Here again, with the use of logistic regression, there was a somewhat 
stronger differentiation between high and low susceptibilities. This is also seen from 
the difference map for the runs 58 (neural networks) and 67 (logistic regression), 
which were calculated using the same parameters (Fig. 8.2-1). Here too, the 
differences were quite small, the predominant percentage lying between –0.1 and 
+0.1. 

 
Fig. 8.2-1: Difference between map of neural network (run 58) – map of logistic regression (run 67) 

 

There were obviously fewer results available now for the validation comparison of the 
“level high” results that had the same parameter combinations (Tab. 8.2-1) than 
there had been for the “level low” runs. Here too, it was seen that the results of 
logistic regression and neural networks, due to the minor differences – despite a 
majority of positive values -- could be termed “similarly good.” That statement was 



AdaptSlide 246 

 

not altered (in contrast to the “level low” results) by the introduction of the threshold 
value for parity (the values in bold in Tab. 8.2-1 exceed these values). This was also 
confirmed by the mean differences [+0.06% with ROC, -0.18% with validation 
according to Chung & Fabbri (1999)] (Tab. 8.3-1). 

Tab. 8.2-1: Validation measured values (AUC) of the test data for “level high” runs with the same 

parameter combination for logistic regression and neural networks, as well as their differences 

 Logistic Regression Neural Network Difference NN-Log Reg 

Run ROC 
Chung & 
Fabbri 

ROC 
Chung & 
Fabbri 

ROC 
Chung & 
Fabbri 

33 91.30% 91.03% 92.22% 91.83% 0.92% 0.81% 

35 80.90% 81.14% 81.74% 81.21% 0.84% 0.07% 

37 90.60% 90.49% 90.71% 90.28% 0.11% -0.21% 

40 91.40% 91.16% 91.55% 91.15% 0.15% -0.01% 

46 91.70% 91.41% 92.07% 91.77% 0.37% 0.36% 

67 LR, 58 NN 92.80% 92.40% 92.82% 92.45% 0.02% 0.05% 

69 90.40% 90.29% 88.91% 88.48% -1.49% -1.81% 

70 90.30% 90.16% 89.88% 89.47% -0.42% -0.69% 

 

Because the “best 5”–“level high” results for logistic regression and neural networks 
are now obviously different with respect to the parameter combinations used, they 
can no longer be directly compared. They must be indirectly compared via the mean 
value of the respective validation value. The validation values for logistic regression 
are entered in Tab. 8.2-2, and those for neural networks in Tab. 8.2-3. The validation 
values of the other method and its differences could only be entered in the 
respective table when there were comparable results. 

Tab. 8.2-2: Validation measured values (AUC) of test data for the “best 5”–“level high” runs for logistic 

regression, as well as their differences 

 Logistic Regression Neural Network Difference NN-Log Reg 

Run ROC 
Chung & 
Fabbri 

ROC 
Chung & 
Fabbri 

ROC 
Chung & 
Fabbri 

43a LR 91.50% 91.29%     

67 LR, 58 NN 92.80% 92.40% 92.82% 92.45% 0.02% 0.05% 

58 LR 93.00% 92.66%     

63 LR 91.40% 91.20%     

66 LR 93.10% 92.74%     

 

Tab. 8.2-3: Validation measured values (AUC) of test data for the “best 5”–“level high” runs for neural 

networks, as well as their differences 

 Logistic Regression Neural Network Difference NN-Log Reg 

Run ROC 
Chung & 
Fabbri 

ROC 
Chung & 
Fabbri 

ROC 
Chung & 
Fabbri 

33 91.30% 91.03% 92.22% 91.83%   

67 JR, 58 NN 92.80% 92.40% 92.82% 92.45% 0.02% 0.05% 

59 NN   91.89% 92.22%   

61 NN   91.41% 91.74%   

P2a NN   92.28% 92.68%   
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The mean differences of the “best 5”–“level high” results, at  -0.08% for ROC and  
+0.62% for validation according to Chung & Fabbri (1999), are also quite low and 
within the threshold values for parity (Tab. 8.3-1). The “best 5”–“level high” results for 
logistic regression and neural networks can therefore, for the most part, be 
considered equally good. 

For the “level high” runs as well, despite the substantial uniformity of the results for 
each method, one result per method was selected that exhibited the best validation 
result for the test data in purely mathematical terms. For logistic regression, this was 
run 66, and for neural networks run 58. When comparing these two single results, it 
was once again seen that the differences in validation values, at - 0.28% for ROC 
and - 0.29% for validation according to Chung & Fabbri (1999), were clearly within 
the threshold values (Tab. 8.3-1), so that these results could also be seen as equally 
good. 

It was therefore seen from the validation comparisons of the “level high” results, that 
the results of logistic regression and neural networks could be considered “equally 
good” based on the validation methods used. 

For neural networks, the common final result for the “best 5”–“level high” runs is 
presented in the form of the mid-range and range in Fig. 8.2-2 and 8.2-3. This is 
compared to the final result for the “best 5”–“level high” runs using logistic regression 
with the corresponding maps in Fig. 8.2-4 and 8.2-5. Here too, it was seen that the 
susceptibility maps for both methods showed quite similar pixel distributions, 
although the distribution for logistic regression did differentiate somewhat more 
strongly between high and low susceptibilities.  

Major differences were however seen in the range-maps: whereas the range-map of 
logistic regression, with an average of 0.028 and a maximum of 0.31 achieved 
similarly high values to those of “level low” (Chapter 8.1), the range-map for neural 
networks, with an average of 0.09 and a maximum of 0.48, exhibited much higher 
values than either “level low” or logical regression at “level high.” These major 
differences were also very obvious when comparing the map images.  

However, it should be stated here that the “level high”-range map for neural networks 
is not comparable to either the “level low” map for this method or the “level high” map 
for logistic regression. This is the case because the “level high” map for neural 
networks was produced from 5 runs with all 3 substrate parameter maps 
(Sub_GK_lg, Sub_GK_lh and BK), whereas the “level high” map for logical 
regression was produced from 4 runs with the same substrate map (Sub_GK_lh) and 
only one run with a different substrate map (BK). The “level low” map for neural 
networks was produced with only one substrate map (Sub_GK_lg) for all 5 runs. That 
was the case, because it had been noted that the large-area differentiating substrate 
maps also caused quite different large-area modifications in the susceptibility maps. 
While all of the other input parameters for the respective runs were the same, except 
for the subsurface flow dispositions, which were always similar, and the evened 
precipitation. The high values of the “level high”-range map of the neural networks is 
therefore not a result of the methodology of neural networks, but rather the use of 
several different parameter maps. 
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Fig. 8.2-2: “Best 5”–“level high” map (mid-range) generated by neural networks 

 

 
Fig. 8.2-3: Uncertainty – “level high” map (range) generated by neural networks 
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Fig. 8.2-4: “Best 5”–“level high” map (mid-range) generated by logistic regression 

 
Fig. 8.2-5: Uncertainty – “level high” map (range) generated by logistic regression 
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8.3. Comparison of “Level Low” and “Level High” Results 

Comparison of “level low” and “level high” results 
In these runs, neural networks and logistic regression generally produce quite similar 
susceptibility maps, although logistic regression differentiates somewhat more 
strongly between high and low susceptibilities. It was seen in the validation 
comparison, that the results of logistic regression and neural networks, based on the 
validation methods used, could be termed “equally good” to “slightly better in the 
case of neural networks.” However, due to the limited significance of these 
comparisons (for example summarized area-wide validation), neither of the two 
models can be clearly favoured. 

On the whole, the susceptibility maps for neural networks and logistic regression 
exhibit quite similar pixel distribution with the same parameter combinations. With the 
use of logistic regression, there was somewhat stronger differentiation between high 
and low susceptibilities. 

The validation comparison in Tab. 8.1-1 and 8.2-1 of all “level low” and “level high” 
results from runs with the same parameter combinations demonstrates that the 
values from neural networks and logistic regression are similarly high. However, on 
closer examination, it is seen that the positive differences predominate, both in 
general and when the threshold value criterion for parity is used. However, the latter 
applies only to ROC, whereas here, the values for validation according to Chung & 
Fabbri (1999) are approximately equally high. Because positive differences indicate 
higher validation values for neural networks, it can be assumed on the basis of this 
validation comparison, that the model performance of results with neural networks is 
“equally good” to “slightly better” compared to that of the results with logistic 
regression. When the mean differences (Tab. 8.3-1) are compared, two positive 
values: +0.47% for ROC and +0.25% for validation according to Chung and Fabbri 
(1999) also occur, however they do not exceed the threshold criterion for parity. 

When the validation comparisons for the “best 5”-“level low” and -“level high” results 
are summarized (Chapter 8.1 and 8.2 and Tab. 8.3-1), it is also seen that the model 
performance of the results with neural networks is “equally good” to “slightly better” 
than the model performance of the results with logistic regression. This also applies 
to comparisons of the “best” single results (Tab. 8.3-1), for which, despite the high 
degree of similarity of the best results of one modelling method, one result per level 
was selected by means of the best purely mathematical test data validation.  

Finally, for both modelling methods, one “overall” (best of all) result was selected on 
the basis of the respective validation strategy used. Here too, the best results lay so 
close together that the selection is somewhat arbitrary. For both neural networks and 
logistic regression, this was the result of the respective run 58. However the two 
results, due to the different successive parameter integration in the two kinds of 
modelling, also had different parameter combinations. Here run 58 for logistic 
regression had an AUC for the test data of 93.00% with ROC and 92.66% with 
Chung and Fabbri (1999). For the neural-networks run 58, these values were 92.82% 
and 92.45% respectively. 

The resulting differences (Tab. 8.3-1) were also small and still lay within the 
threshold-value range for parity, so the two results should also be assessed as 
equally good. 
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Tab. 8.3-1: Summary of the differences between the validation measures values (AUC) of the test data 

for neural networks and logistic regression 

 Difference NN-Log Reg 

Multiple runs ROC (Mean) Chung & Fabbri (Mean) 

Runs with same parameter maps “level low” 0.65% 0.44% 
Runs with same parameter maps “level high” 0.06% -0.18% 
Runs with same parameter maps “all” 0.47% 0.25% 
Best 5 runs “level low” 0.80% 0.62% 
Best 5 runs “level high” -0.08% 0.62% 

      
Single runs ROC Chung & Fabbri 

Run with highest test date value „level low“ 0.89% 0.75% 
Runs with highest test date value „level high“ -0.28% -0.29% 
Best run of all -0.18% -0.21% 

 

In general, therefore, in the validation comparisons between the two methods, the 
results for logistic regression and neural networks can be termed “equally good” to 
“slightly better for neural networks” based on the validation methods used. As 
mentioned above, due to the limited significance of these comparisons, neither of the 
two models can be definitely favoured. 

 

8.4. Discussion and Conclusions 

As shown above, both intermethodological validation results and those from method-
specific runs are quite similar, although the results for neural networks are in part 
somewhat better. From the authors’ point of view, the summarized area-wide 
validation methods (Chapter 7.2) used here (and also internationally) are not 
adequate to provide unequivocal, reliable statements on model performance, 
particularly when there are results of similar quality. For that reason, the authors 
have refrained from stating that one modelling method, or a single modelling result, 
is clearly superior to others. The inadequacy of the validation methods was seen, for 
example, from the fact that the susceptibility map for one result was completely 
changed by the integration of precipitation, and probably also improved due to the 
definite influence of this parameter, however the validation result was still virtually 
unchanged (Chapter 7.2.2.2). 

As neither of the methods and no result can be singled out as the best, all of the 
results of both modelling methods and several results for each level, were used to 
produce a common final result. That also made it possible to depict the spatial 
variability and the uncertainty of susceptibility. This was done by selecting the 5 best 
runs for each level of each method and then combining them to make a common 
map. These “best 5”–“level low” and “level high” maps for the two modelling methods 
were then combined into a common, intermethodological, “level low” or “level high” 
map, in which there was, in each case, cell-specific calculation of the mean 
susceptibility from all maximum and minimum values (= mid-range) and the 
fluctuation range (= half range). 
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This mid-range, which, due to the small number of outliers, comes very close to the 
arithmetic mean, was selected, because with this value, a good combined 
presentation with the fluctuation range as a measure of uncertainty can be 
guaranteed. The final-result map is thus a “mid-range +/- half range.” This form of 
presentation therefore covers the entire potential range of values in one combined 
map, and it is very clear and easy to understand. It was used for the final-result map 
for “level low” (Fig. 8.4-1), and for “level high” (Fig. 8.4-2), which are also shown in a 
larger scale and with a legend in the Annex (Fig. A1 and A2). Here, the 
susceptibilities of the mid-range were shown in the usual colours (high values in red, 
low values in green), the half range (fluctuation range = uncertainty), on the other 
hand, is shown by means of superimposed black circles/dots (not visible in the case 
of very low values). 

 

 
Fig. 8.4-1: Combined final-result map “level low” of susceptibility and uncertainty for both methods (for 

legend see map in Annex A1) 

 

As in the case of Fig. 8.2-5, it can be seen from Fig. 8.4-1 that the uncertainties in 
the “level low” final-result map are very small, whereas somewhat greater 
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uncertainties extend mainly along the black/green schists (in the west). There are 
only a few, isolated areas of major uncertainty.  

The “level high” final-result map is quite similar to the susceptibility distribution of the 
“level low” map, however greater uncertainties are clearly recognizable, which derive 
from the “best 5” map of neural networks (explanation in Chapter 8.2). It is clearly 
seen that little uncertainty/few fluctuations appear primarily in areas that were always 
shown as very stable (many forest areas) or as very instable (many lower slope 
areas). 

 

Fig. 8.4-2: Combined final-result map “level high” of susceptibility and uncertainty for both methods (for 

legend see map in Annex A1) 

 

Mean susceptibility (= mid-range) in combination with fluctuation range (= half range) 
are causing several possible disposition classes in many cells, which are illustrated 
in the final-result map for “level high” in Fig. A3 in the Annex. 

As a rule, it can also be said that because of the similarity of the validation results 
and the inadequacy of the summarized area-wide validation methods, a combination 
of several results from both modelling methods should always be used in the 
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Adaptslide project and subsequent projects. With the currently available validation 
methods, only obviously better results can be recognized as such, whereas with 
moderate to minor differences in the validation results – and these made up the 
major portion of results obtained during the Adaptslide project – the issue of the 
better result inevitably remains unclear. Singling out one best result or one best 
method would therefore be a randomly decision and could not be justified. Thus, in 
order to make reliable statements concerning both model performance and the 
possibilities of improving final results, as well as the capacities of individual modelling 
methods, it will be urgently necessary to develop new validation methods in the 
future. 
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9. Modelling the Process Areas under Consideration of the 

Spatial Variation of the Landslide Disposition (BFW) 

On the basis of a comprehensive documentation of numerous landslides in the 
communities of Gasen and Haslau (South East Austria, Province of Styria) in 2005, a 
method was developed to estimate the runout length of shallow landslides and the 
resulting debris flow events. The aim was to complete the landslide disposition maps 
by estimating not only the starting zones of the landslide, but the whole area affected 
by the process. A modified empirical approach, based on several avalanche 
applications, was developed in order to allow regional applications with usually 
limited data availability. Starting from documented events or susceptibility maps 
(raster information), the flow path was calculated by a multiple flow approach. In 
addition, parameters to consider the effects of concave or convex terrain on the 
lateral spread and the runout length were developed.  

 

9.1 Basics and Aims 

As shown in Chapter 7 there are several methods to estimate the landslide 
disposition of spontaneous landslides in loose material. 

However, these maps do not allow conclusions on the affected areas. When 
spontaneous landslides in loose material result in debris flow, they affect an area 
which is far larger than the starting (sliding) area. Hence, for compiling maps showing 
endangered areas in detailed scales, it is necessary to determine the flow paths and 
the spread of the moving masses, too. Due to the high possible transport velocities, 
the forces are high compared to the transported masses. The occurrence of the 
process is abrupt and often surprising. These reasons cause high risks of casualties 
and the loss of property. 

There are hardly any available methods and models, which can meet the demands 
specified as following: 

� The runout length and, if possible, the affected area of landslide-triggered 
transport processes should be calculated. 

� The method should be applicable on an area-wide basis. 
� The method should have moderate model input requirements. 
� The method should complete the contents of the landslide-disposition maps 

generated in the test area (scale,…) 
� The method should be able to deal with varying types of starting point 

information.  

The comprehensive documentation of numerous landslide events in the communities 
of Gasen and Haslau (Chapter 4) offered the possibility to develop a simple method 
to estimate the runout length of spontaneous landslides and landslide-caused 
transport processes like debris flow on slopes on an area-wide basis, using just a few 
key parameters.  
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The developed method should complete the raster-based slope susceptibility maps 
and result in “advanced” hazard index maps. It is mentioned that the displayed 
process areas cannot fulfill the requirements of hazard maps due to the unknown 
frequency and magnitude of the events. The approach aims at simulating small and 
medium-sized spontaneous landslides in loose material. 

The model input requirements are defined as follows: 

� DEM10 (Digital Elevation Model, 10 * 10 m) or higher resolution for 
morphologic information. 

� Documented events (triggering, transport and deposition zones) to support the 
determination of the model input parameters and to calibrate the model. 

 

9.2 State of the Art 

The implementation of most of the available models requests a sound knowledge of 
basic data, such as detailed morphological information (e.g. DEM with high 
resolution and additional information about constructions, data on physical 
parameters (e.g. inner and external friction coefficients, masses) or the type of 
transport process, which are usually not available or ascertainable in sufficient 
quality. These approaches are therefore suited for selective assessments. Some 
more or less established models and approaches, which are designed to determine 
the flow path and runout distances and partially additional information on the flow 
velocity and deposition issues are e.g.: 

� FLO2D: This commercial model needs comprehensive information on the 
volume, hydrographs (which do not exist in the usual manner in the case of 
debris flow caused by spontaneous landslides on slopes) and rheologic 
conditions (FLO-2D User’s Manual 2004, Garcia et al. 2004, Jäger & Moser 
2008) 

� RAMMS: The Rapid Mass Movements Software package has also been 
available for debris flow for some time. High requirements of the models input 
data and the limitation to single debris flow assessment are anticipated (Stähli 
& Bartelt 2007, RAMMS 2010). 

Several approaches are available to estimate the area potentially affected by 
landslide runout masses: 

A promising approach of area wide estimation of debris flow range and flow paths 
was realized in the SIVAProtect –CH project. The main objective was to quantify the 
vulnerability of settlements and infrastructure and to identify protection forests 
throughout Switzerland in case of rockfall, avalanches, landslides and debris flow 
(BAFU 2008). For determining the triggering areas of landslides, the model SLIDISP 
(Liener & Kienholz 2000, Liener et al. 2008) was implemented. This approach 
calculates the slope stability by infinite slope analyses for each single raster cell. 
Starting from these raster cells, transit and depositions area from slope debris flow 
(triggered by spontaneous, shallow landslides) where calculated with the model 
SlideSim (geo7, 2010). It requires user defined external and internal friction 
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coefficients. These data have to be identified in a deterministic way e.g. by 
calibrating the model in well documented test areas. Unfortunately, SlideSlim is not 
available – simulations have to be charged by GEO7. 

Similar approaches are currently tried out in tests in smaller regions in some 
European countries; e.g. Dahl et al. (2010) presented a simple approach for mapping 
regional landslide susceptibility and runout on the Faroe Islands. 

Generally, for predicting landslide runout, two types of models are used: Statistically 
based models and physically based models. Good overviews are presented in 
Rickenmann (2005), Hürlimann et al. (2008) and McKinnon (2010). Statistical models 
correlate physical properties of the landslide, landslide prone slope and/or 
geomorphologic characteristics of the flow path with the extent of the runout zone. 
Best practice dictates that statistical models should only be applied in conditions 
similar to the events used in the statistical analysis (Rickenmann, 2005 cf. McKinnon, 
2010). This especially holds true for issues of the initial volume, the detachment 
position of the unstable mass and the conditions of the transport and deposition 
zones (McKinnon, 2010).  

Statistical approaches for runout calculation of mass movements originate from the 
concept of Heim (1932). Heim (1932) deviated the first linear regression to use the 
volume of rock avalanche hazards for predicting the ratio H/Lh between the vertical 
fall height (H) and the length of the horizontal projection of the track, called travel 
distance (Lh) from the starting to the end point of the mass movement. He 
denominated H/Lh the ‘travel angel’ (also called angle of reach, AOR). H/Lh 
corresponds to the angle of the line between the start and the end point of the mass 
movement and the horizon level. It is possible to determine the travel distance of 
mass movements by the intersection of this line with the terrain profile along the 
movement path. During practical implementation the minimum or medium observed 
H/Lh ratio is often used for the runout calculation, because it is difficult to estimate 
the factors, which determine the H/Lh ratio locally, e.g. the potential volume (V) or 
area (A) of the failure. This is called the general gradient concept. The problem is 
that the H/Lh ratio of observed mass movements varies widely and the variations 
cannot be explained only by the variance of slide volume and area. Therefore, 
Corominas (1996) performed H/Lh – volume regressions for subsets of landslides, 
categorized by movement and path morphology adapted to different scopes. 
According to our field observations, the travel distance especially of smaller 
spontaneous landslides in loose material, correspond more to the water saturation of 
the debris, the grain size and the morphology of the path (curvature, roughness) than 
to the initial or deposition volume. This is also confirmed by the observations and 
analyses of other authors, e.g. Corominas (1996), Iverson (1997), Rickli and Bucher 
(2003), Okura et al. (2003) and Dahl et al. 2010. Data of landslides tabled by Iverson 
(1997) and Legros (2002) suggest a significant decrease of the H/Lh ratio with 
increasing flow volume.  

Other empirical runout calculation approaches are based on mass reduction factors 
and the concept of volume balance along the flow path (Hungr et al., 1987; Cannon, 
1993). They require detailed and precise data on the flow path and the initial volume. 
The lateral spreading of debris can be considered with multiple flow direction 
algorithms, Monte Carlo and random walk approaches.  
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Dynamic runout models are based on physical relationships to establish runout 
characteristics, such as applying the lays of the conservation of momentum to the 
kinematics of a failing mass. Dynamic models account for the progression of time 
and for terrain anomalies, and thus may be used to predict a complete description of 
landslide motion (McKinnon, 2010). In principle, there are two kinds of dynamic 
models: point mass models and continuum models. 

Point mass models (mainly 1D analytical models), presume the failure volume to be 
a single mass without interaction between the moving debris parts. They reduce the 
landslide mass to a single point and calculate its dynamics along a previously 
selected flow path. The implied physical model of mass movement is Coulombs law 
of friction (frictional rheology) or the frictional-turbulent Voellmy fluid flow rheology. 
The Voellmy model (Voellmy 1955) has been successfully applied to both point mass 
and continuum models (Hürlimann et al., 2008). 

Continuum models (1D, 2D and 3D numerical models) treat the flow volume as 
mixture of elements that interact with each other. This allows for modelling the 
source mass deforming throughout the runout, incorporating both solid (dislocation 
along a failure surface) and fluid (continuous flow) deformation, which are 
characteristic of landslides (Hungr, 1995 cf. McKinnon, 2010). 

The downsides of physical-based models and especially continuum models are the 
computational intensity and the demanding rheological parameterization. 

 

9.3 Method 

Due to the difficulties of the practical implementation of dynamic models and limited 
model and data availability, focus has been layed on empirical approaches of runout 
calculation. Empirical approaches have already been implemented successfully for 
snow avalanches. Körner (1980) adopted the concept of Heim (1932) for snow 
avalanches and compared it with the Voellmy model (Voellmy 1955). Lied and 
Bakkehoi (1980) extended the approach and introduced the α/β -model. The model 
was applied to numerous snow avalanches in Iceland (Jόhannesson, 1998), Spain 
(Furdada and Vilaplana, 1998), Austria (Lied et al., 1995), Canada (McClung et al., 
1989; Delparte et al., 2008), Japan (Fujisawa et al., 1993) and Norway (e.g. Mears, 
1989). Latest investigations concerning this statistical approach were carried out by 
Gauer et al. (2010). They used avalanche data from numerous countries and applied 
different snow avalanche models in order to make statistical conclusions. Klebinder 
et al. (2009) applied a simple travel angle model to detect the danger for forests from 
small snow avalanches in the eastern Alps.  

Basis for the model are susceptibility maps, which may be generated in different 
ways. There are various methods to combine, adjust and improve the basic 
approaches of landslide susceptibility (probability) assessment. Modelling of the 
process area depends on the quality of this data base; therefore its development is 
emphased. Starting points are raster cells with a certain degree of landslide 
disposition. Experts and authorities are challenged to identify this value dependent 
on the specific needs of security and interests of area use. 

Within the present study (AdaptSlide) different approaches (weight of evidence, 
logistic regression, neural network, SINMAP) and various parameter combinations 
were generated. The release areas are defined using the base of this raster 
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information. From each cell within the release areas, tracks were determined. 
Starting from such a cell, the tracks were calculated, by determining the path to all of 
the eight neighbouring cells which had lower elevations (multiple flow approach). A 
cell was part of the track, if the slide passed over the cell. Two criteria stopped a 
track:  

(1) Either no neighboring cell with a lower altitude (addition of a selectable tolerance 
possible) exists, or  

(2) the critical angle decreases to .  

Fig. 3 shows the vertical profile of a path (continuous line). The point (x0, z0) is the 
centre of a cell in the release area. The distance to the next cell centre ∆x is either 
the cell size ∆c in north-south/east-west direction or  ∆c along the diagonals. The 
downward slope angle αN for the cell N is defined by eq. (1). 

         (1) 

z0 is the altitude of the cell in the release area and zN the altitude in the cell of 
interest. The denominator is equivalent to the horizontal distance from the cell i = 0 
to the cell i = N along the track.  

If αN < αa (thin line) the maximum travel length is reached at xa caused by criteria (ii). 
In the example shown in Fig. 3 the lower critical angle αb (dotted line) for the travel 
length is marginally longer; the higher elevations trigger the criteria (i). 

 

Fig. 9.3-1: The main principle of the exit conditions based on the vertical profile (details see text) 

 

In order to avoid abrupt stopping caused by criteria (i) depressions of the DEM were 
filled by standard hydrological grid functions in a GIS (Tarboton et al., 1991). 

The critical angle αN is defined by eq. (2). 

          (2) 

α0 represents the basic user-defined angle, cN is the curvature at the cell N (eq. 3) 
and sN the standard deviation of the elevations along the track from the cell in the 
release area to the actual cell I = N (eq. 4). Curvature and standard deviation of 
elevations are used as indicators of flow path confinement and roughness and are 
calculated by the model. k1 and k2 are weighting coefficients which have to be 
defined by the user.  
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         (3) 

The indices n, s, e, w represent the surrounding cells of cell N in the main directions 
to north, south, east and west. 

          (4) 

 is the arithmetic mean of the elevations along the track from cell i = 0 to i = N. 

If the exit criteria were not satisfied at a cell, the same procedure (Fig. 1) is applied to 
all neighbouring cells with lower elevations.  

The factor fspread is defined as the percentage of cells which is used for the further 
calculation. It was found that fspread = 0.3 is a good choice. This means that only the 2 
cells with the lowest altitude may be used in the next calculation step. The above 
procedure was implemented in a recursive manner. The results are paths of slides. 

The model can be parameterized with three coefficients:  

1. Alpha angle (α0) 

2. Weighting of curvature (k1) 

3. Weighting of standard deviation (k2) 

Further basic model settings are to specify:  

� Method of distance determination (geometric, travel) 

� Spread factor (typically 0.3) 

� Threshold for release (value of disposition, e.g. 0.5) 

� Upslope threshold (tolerance for abort criterion (1)) 

 

9.4 Model Calibration 

Basis of the model calibration are digital information on the starting – transport and 
deposition zones with accurate position information (Fig. 9.4-1). The best data can 
be gained from aerial photographs, which are recorded close to the event. Due to the 
uncertainness of aerial photograph interpretation (Fig. 9.4-1, e.g. B), caused by 
clearings in settlements and near roads (unclear transport and deposition zones) and 
limited quality of interpretation in case of forest cover (Fig. 9.4-1, e.g. A), only data 
checked by in-situ and/or by photo documentation should be used. It has to be 
considered, that confined debris flow (e.g. because of deposition in tributaries Fig. 4 
C) may lead to overestimations of the alpha angle and result in underestimations of 
the travel length. First results show that the aerial photo polygons (Fig. 9.4-1, brown) 
cannot be intersected with the DEM to determine the alpha angles “automatically”. 
Hence, for well documented landslides/debris flows trajectories (yellow lines) have 
been inserted manually to describe the flow path and the range of the debris flow.  
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Fig. 9.4-1: Aerial photo information (brown polygons) and manually inserted trajectories. A: 

Uncertainties of the range due to forest cover; B: Misinterpretation due to an already cleared road; C: 

confined runoff area due to debris flow discharge in a tributary 

 

When calibrating the model, it is proposed to start with the alpha angle. The alpha 
angle is defined as the quotient of ∆H/∆L of the trajectories. Statistical analyses of all 
(112 landslides) reconstructable travel paths of landslides result in a whole area with 
a mean alpha angle of about 26° (arithmetic average). The alpha angles of landsides 
with very short sliding distances showed sometimes unrealistic values and a spread 
above average. Simultaneous calculations in the section, where also a DEM1 (Digital 
Elevation Model 1*1 m) was available, produced a mean alpha angle of 29°. 
Thereby, variances of the alpha angles calculated with DEM 1 and DEM 10 where 
recognized up to 10° especially (of course) in the case of small ∆L. Due to these 
reasons, only landsides >20 m where elected for further analyses. The mean alpha 
angle based on this dataset (95 landslides) is 27.6 °. Fig. 9.4-2 shows the distribution 
of the landslide – length and alpha angels of the data set. 
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Fig. 9.4-2: Distribution of landslide - length and alpha angles of the selected dataset 
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The calculated regression between the horizontal landslide length (∆L) and 
difference in altitude (∆H) shows a slight increase of the alpha angle with increasing 
length, which is interpreted as being stochastic within the quality of the data and the 
correlation respectively (Fig. 9.4-3).  
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Fig 9.4-3: Correlation between ∆H and ∆L of the runoff paths of selected landslides  

 

For determining the alpha angle, well documented, unconfined landslides and debris 
flow and a DEM with an adequate resolution are preferable. Included landslides with 
confined runoff caused an overestimation of the alpha angle and therefore short 
travel length.  

The calibration of the weighting for curvature has to be determined in an iterative 
way by interpreting the effects of changed weights of curvature to spread and travel 
distance for the model runs. Higher weighting of curvature produce longer travel 
distances in concave surface structures caused by material-concentration and 
reduced surface-friction. 

The standard deviation of the elevations along the track that influence the alpha 
angle, have to be determined in the same way. 

 

9.5 Modelling Based on Single Point Starting Zones 

The model (ASlide 1.0) is developed to handle with different kinds of raster based 
starting information, as single point (Pixel) information or susceptibility maps are. 

Single point starting zones will be applied by known starting points e.g. on the basis 
of well-documented past landslides/debris flow and/or possibly compared to other 
models. Furthermore, it is the adequate way to calibrate the model and check the 
results for plausibility. Therefore, insights from model application are discussed first 
on this basis, while being aware that the validation of model results on single slide 
events involves scale factor problems – the model is not developed to produce 
results for travel length and spreading in detailed planning scales.  
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The mean value of the model is certainly the alpha angle. Identification should be 
done for unconvinced, well documented landslides and debris flow and a DEM with 
an adequate resolution. The area-wide availability of the DEM with 10*10 m 
resolution in the test area facilitates the rejection of landslides with a length of less 
than 20 m. Furthermore, implausible runaway values have to be removed from the 
database. These steps reduced the difference of the mean alpha angle determined 
by DEM10 and DEM1 to 0,47° in the test area. 

As model calibration showed, the average alpha values can be seen as the upper 
limit. Applications showed that for the whole test area, alpha angles around 22° (75 
% of the documented trajectories are steeper) showed the best results. The lower 
limit for the alpha angle in the test area is 17 – 18 ° (90 % of the documented 
trajectories are steeper). With this alpha angle and the further model 
parameterization shown below, most of the documented process areas were marked 
by the model with coevally overestimation of the affected areas in several sub-
regions. In particular cases, the DEM could not reproduce the surface correctly. In 
these cases the model results differ from the documented process areas and can not 
be improved by varying the model parameters (e.g. with reduced lower alpha angles, 
Fig. 9.5-1). Using the average alpha angle of the test area (26 °) tends to 
underestimate the process area in many cases. 

 

 

Fig 9.5-1: ASlide 1.0 – Single point starting zone, landslide and ongoing debris flow in Gasen (one 

example of about 50 assessed process areas). White: Documented (reconstructed) process area. An 

alpha angle of 17 ° (yellow) overestimates the process area in this case. The alpha angle of 22 ° leads 

to a slight underestimation of the process area. However, an essential part of the deviation (model 

results - documented process area) is caused by the impreciseness of the DEM 
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Based on practical experience and application of other models, it is known that 
concave surface structures increase the range of debris flow by concentrating the 
mass and reducing friction forces. In the model, these structures are calculated for 
each cell from the DEM to consider these effects by changing the alpha angle. 
Applications based on the DEM10 showed that information on small structures had 
been inadequate. But as small debris flow volumes mostly occurred in the test area, 
this information is crucial. Generally, effects of increasing weighting of curvature in 
the model include the concentration of the flow to concave structures and the 
increase of runout length. The spread is increased by convex structures and the 
runout length decreased. Although the model is designed to simulate landslides and 
debris flow on planar slopes and not for channels, model results considering the 
curvature show enhanced and generally plausible results.  

Model approaches with higher resolutions certainly showed better adjustment to 
surface structures, especially channels. However, with increasing resolutions, new 
challenges arise. Small structures which are not displayed in a DEM 10 but displayed 
e.g. in a DEM1 (e.g. forest roads) lead to a changed flow path. These effects may 
lead to an increase and/or misinterpretation of affected areas because, in reality, 
debris flows often cross such structures without relevant changes of the flow 
direction. Therefore, higher resolutions do not necessarily lead to better results. 
Considering the aim of the assessment at a regional scale and the usual resolution 
of the base indicating the starting points of the model runs (susceptibility map 50 * 50 
m), a DEM10 or DEM5 calculated on the base of a DEM1 might be most suited for 
this area. However, further verifications in this issue were not possible because a an 
area-wide DEM1 was not available. 

 

9.6 Modelling Based on Susceptibility Maps 

The real aim for developing this model was to complete the information of landslide 
susceptibility maps. Therefore, the ASlide model is designed to calculate area-wide 
information of starting information in raster (pixel) form. For the model runs and to 
show the results, the starting information of the “best of five” landslide disposition 
map, level low (compare Chapter 8) are the basis. The Annex comprises the 
corresponding model results for the starting information of the landslide-disposition 
map level high. 

The first issue running the model on this starting information concerns the starting 
criterion. The model allows to define a threshold regarding the landslide disposition. 
When the pixel information exceeds this threshold, the model identifies the pixel as 
triggering point and starts to calculate the runout length.  

The determination of this threshold affects the calculated process area considerably. 
Though there are functional aspects determining this threshold, it is finally also a 
political decision which “residual hazard” will be acceptable. For the test area, a 
threshold of 0.5 is supposed, which is on the one hand the medium disposition value 
(0 – 1). On the other hand, this disposition level seems to be a suitable compromise 
between the recognition rate of the mapped landslide starting zones (nearly 80%) 
and the percentage of the indicated area in relation to the whole test area (about 25 
%). It is also the breakpoint in the relation between recognition rate and indicated 
area, where the “area consumption” passes the recognition rate (angle of the 
function > 45 ° Fig. 9.6-1; compare also Chapter 8). However, this value displays the 



AdaptSlide 265 

 

relative disposition of landslide probability on the base of the mapped events and 
cannot be transformed to absolute, comparable values of probability (Chapter 7).  
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Fig. 9.6-1: Relation between disposition level, recognition rate (of the susceptibility map, complete 

dataset best result, level low) and percentage of the test area 

 

Running the model the user has to decide between two opportunities of results. 
Either all effected areas can be marked by  

1. an unique value or  

2. the disposition value can be overtaken 

 

Add. 1: 

Fig. 9.6-2 shows the simplest kind of results which can be achieved with the model, 
compared with the massmovement – hazard map and mapped areas affected in the 
2005 event. Each pixel which is affected by landslides will be marked with 1. This 
kind of result allows only the interpretation “affected of landslides or not” – it is not 
evident if this classification results from the disposition map or from the ASl-model. 
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Fig. 9.6-2: ASl model run for the centre of Gasen (with alpha = 17 ° - lower limit/ maximum extent and 

other adjusted model-parameters, marked yellow). The process area of all selected and mapped 

landslides (violet) is indicated as process area as well as most of the area indicated as endangered by 

the hazard map. Considerable parts of the area are indicated as process-area only by the model 

results 

 

Transferring the model results into a GIS allows to merge them with the disposition 
map and to receive therefore the additional information, if the indication results from 
the disposition map or from the runout-length model (Fig. 9.6-3). The relation of the 
area indicated by the disposition model and additional areas indicated by the runout-
length model can be displayed as well as parts of the process areas which are only 
affected by the transport processes. As shown in Fig. 9.6-3, most of the affected 
areas as determined by the “runout length-model” have already been identified as 
areas of high landslide disposition by the hazard index map. This is reasonable 
because of the importance of the slope angle in both models. Furthermore, the test 
area has small surface structures and a predominant landslide disposition on lower 
slopes causes a short transport length. Combined with the 50 * 50 m resolution of 
the disposition model, which also covers flat areas, the extent of additional areas 
displayed as endangered areas because of transport processes may be assessed as 
being relatively low in this area. This underlines the high relevance of the quality of 
starting information as appointed by the quality of the disposition map and the 
starting criteria (threshold) – agreements. 

Merging model runs with different parameterization allow estimating areas with 
higher and lower probability of landslide transport processes (Fig. 9.6-4). It is noted 
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that this information contains only the probability of the transport process (if the 
landslide is already triggered) but not the probability of landslide triggering.  

 

 

Fig. 9.6-3: Comparison of endangered areas based on a susceptibility map (50*50 m Susceptibility 

>0.5 orange and modelling results (basis 10 * 10 m DEM with the runout-length model (yellow), same 

features as in Fig. 9.6-2. The yellow areas have to be additionally considered as affected by mass-

transport processes 
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Fig. 9.6-4: Comparison of (by the ASl model) indicated areas with alpha best results (22 °, brown) and 

alpha lower limit (17 °, yellow). For the area of the existing buildings in Gasen the modification of the 

alpha angle has a low impact, only in the SE of the shown section the sensitivity is higher, other 

features are the same as in Fig. 9.6-2 

 

Add. 2: 

Fig. 9.6-5 (Fig A4 in the Annex for the whole test-area) shows the model results 
overtaking the disposition level from the disposition map. The affected areas are not 
marked with a static value as in 1 but with the level of disposition of the starting zone. 
In case of competing values, the highest disposition value will be stored (in each 
pixel). The added value of this approach is that the (relative) endangerment for each 
cell in combination with the disposition map and the runout-length model is shown. 
So, areas with a moderate landslide disposition may have to be reclassified being 
highly endangered because of mass transport processes from higher endangered 
areas above (e.g. example in Fig. 9.6-5 - circle). The results offer the best possible 
model information, thus the interpretation of such maps is more ambitious.  
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Fig. 9.6-5: Model-run with disposition values overtaken from the susceptibility map. In several areas, 

the endangerment is higher than indicated by the disposition map because of mass transport 

processes above (example see circle: The disposition value of 0.5 - 0.6 have to be raised up to 0.8 - 

0.9). Other features are the same as in Fig. 9.6-2, ASl modelling with “best alpha” (22 °) 

 

9.7 Discussion 

The introduced model is designed for a local to regional determination of area-wide 
runout length of landslides in case of limited data availability. Hence, for detailed 
local-scale use, results have to be verified by additional studies. The approach 
estimates areas affected by mass transport processes triggered off by spontaneous, 
more or less shallow landslides in loose material. Thus “hot spots” should be 
identified.  

The application of this empirical approach requires an adequate date base of 
documented landslides and/or slope debris flow. Since landslides and especially the 
runout length of landslides are not reliably recorded in detail, the application of the 
approach is limited. 

Furthermore, the resolution of the DEM needs to display the transport-relevant 
surface structures. There is no generally admitted agreement concerning the scale of 
the DEM. It varies with different landscapes and different landslide characteristics 
(volume etc.) and should be revised by single point modelling. In the test area, the 
available DEM 10 met this requirement not always in a satisfying manner, because 
of the small spatial surface structures and the accuracy of the DEM which appeared 
to be less than 10 m. 
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Finally, the quality of the landslide starting information (e.g. susceptibility maps) must 
be as good as possible, because of its significant impact to the model results. For 
the determination of the starting criterion (threshold), the scientific considerations 
indicate a threshold of 0.5. However, this decision depends also on substantial socio-
economic and administrative reasons. Further applications and the feedback of 
practitioners should give insights into how to deal with this issue. 

The implementation of a multiple flow approach in the flow path resulted in a more 
realistic determination of affected areas, especially in case of convex structures such 
as alluvial fans. The concomitant implementation of a parameter considering the 
surface curvature produces more plausible model results, although the effect of this 
parameter is limited by the rough model resolution in relation to the small surface 
structures and the small debris flow volumes in the test area.  

At this stage of model development, the parameterization of the model is static, 
which means that it is not modified by area information. For this reason, the model 
quality depends on the homogeneity of the modeled area. For the test region, this 
pre-condition was not met perfectly. An area within the community of Haslau 
(Amasseggerbach) showed differing landslide transport conditions. Unfortunately, 
there was no significant correlation found between the (assumed) area and given 
parameter information of the area. 

Since the ASl model was designed as a simple, empiric approach, the result can only 
display the area affected by landslide processes, whereat the displayed results on 
pixel basis have to be interpreted as an assumption with limited demands of 
accuracy, which do not keep up with the highly displayed resolutions. Of course, the 
results do not allow any quantification of transport volumes, velocity and resulting 
forces. They have to be assessed in crucial areas with enhanced models or by 
expert knowledge in the field to define obligations restrictions or protection 
measures. The optionally displayable probability is overtaken from the disposition 
map and are therefore (in this project) of an area-specific, relative value. 

When assessing the model results, it turned out that we do not have adequate 
methods to evaluate regional model results in an objective and transparent way. 
Assessment of model results on the basis of documented single events amended by 
expert knowledge and other model approaches may be sufficient for model 
calibration, but it is not an adequate tool to evaluate the model results in a 
comparable way.  
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10. Potential of Methods regarding Susceptibities Under 

Changed Frameconditions (Climate Change, Land-Use 

Change) 

10.1 Basics (Climate Change, Land Use) 

While the complex systems of landslide processes depend on several parameters, 
climatic and especially precipitation conditions are the major direct triggering factor. 
Different kinds of land use may considerably influence the pre-triggering conditions 
on the one hand and on the other hand, they are relevant for the possible damages 
eventually caused by a landslide-event. Due to that fact, changes of these factors 
are relevant for the landslide process itself, and for the magnitude of property loss 
(Fig. 10.1-1, Hagen & Andrecs 2011). Climate Change became a quiet popular 
theme within the last years, land use changes have been associated with 
socioeconomic development since a long time. 

 

 

Fig. 10.1-1: Schematic relation between risk, hazard and vulnerability. Changes of hazard as well as 

vulnerability (caused by socioeconomic development) may abate or boost the risk 

 

10.1.1 Climate Change – Facts and Assumptions  

Earth history tells us that there have always been temperature changes driven by 
various reasons. However, according to the Fourth Assessment Report of IPCC 
(2007), global warming is already a fact (amount to about + 1,5 °C in the Alps, 
including regional variations (e.g. Reinhard Böhm, 2009). It will continue (which is 
virtually certain) in the 21st century, depending on the development of greenhouse 
gas emissions (Fig. 10.1.1-1).  
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Fig. 10.1.1-1: The region of the Alps seems to be particularly susceptible to climatic impacts; the 

variance of temperature is more visible in this region than in the global trend. HISTALP (Auer at al. 

2007 and Böhm et al. 2009) 

 

Since the parameter temperature is not relevant to landslide processes, its rise will 
not affect landslide processes and dispositions directly. A fortiori, the assumed 
accompanying effects, namely the impact of precipitation behavior have to be 
considered. Changes of land cover due to climatic change (changed forest species, 
increasing number of forest fires and wind blows etc.) may also influence the 
dispositions of slopes for landslides, but this thematic field is far too complex to deal 
with in this project. 

According to the IPCC report, it is very likely that heavy precipitation events have 
already increased in most areas, and this trend is likely to continue. For Central 
Europe (Christensen et al 2007, Andrecs et al. 2010) summer precipitation will 
decrease with drought but extreme precipitation events are likely to increase 
(prediction highly model-dependent). Winter precipitation will increase as well as 
extreme precipitation events (in magnitude and frequency) while snow cover will 
decrease. 

Presumably, in Austria, precipitations during the summer months are likely to 
decrease while winter precipitation will increase. However, conclusions on heavy 
rainfall events can only be drawn to a limited extent. 

For the test bed (communities of Gasen and Haslau) the precipitation event 
(including the high preprecipitation amount) must be considered as not having been 
measured before, which means a period of about 120 years (Tab. 10.1.1-1, Andrecs 
et al 2007). Although this was an extreme event, it is not serious to draw conclusions 
from this single event to an ongoing climate change. Linked with other extreme 
events it might be a small part of the “Global Puzzle”.  
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Tab. 10.1.1-1: Precipitation sums of the gauging stations of the Hydrographische Landesdienst 

Steiermark in the region of Gasen and Haslau, (2005). It shows up a significant spatial variation which 

can not be explained by topographical issues – compare Chapter 5.5) 

Lage
Station Gebiet SH (m) N seit NTag/Max (mm) N2T (mm)

Birkfeld O 680 neu/ 1893 64 124
Breitenau/Mixnitz W 560 1921 60 118
Fladnitzberg SW 1070 1988 100 169
Hohenau a.d.Raab S 702 1981 135 191

Schanz N 1230 neu 85 107
Stanz NW 648 1936 67 128
Teichalm W 1175 neu/ 1897 (58) (92)

Stationsdaten Ereignis

 

 

10.1.2 Land Use Change  

The history of settlement and socioeconomic development is (not only in the Alpine 
space) also the history of land use and its changes. Land use is a relevant factor 
within landslide triggering conditions.  

Generally, forest cover is assumed to decrease the landslide disposition because of 
the mechanical stabilisation of the soil by the roots and an increased 
Evapotranspiration potential. However, also the additional weight of forest stands 
might be relevant.  

In Austria, the forest cover is continuously increasing (Fig. 10.1.2-1), mainly because 
of the artificial or natural reforestation of former agricultural used areas (meadows, 
mountain pastures). 
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Fig. 10.1.2-1: Development of forest cover in Austria (Russ 2011) 

 

Constructions can influence the landslide disposition in both directions. Slope 
draining, retaining walls, geotextiles etc. should reduce it, constructions with steep 
slopes, raised and inadequately stabilized material may increase the landslide 
disposition considerable as it was observed in the test bed in 2005.  

Our awareness of natural disasters such as landslides is primarily associated with 
the extent of losses, respectively with the risk of losses. The term risk is defined as 
the product of hazard and vulnerability. Calculating vulnerability means to determine 
the number of affected objects and their resistance against the potential damage. 
Fig. 10.1.2-2 shows the increase of buildings in Austria, from 1951 to 2001 (from 
916.448 to 2.047.712 buildings). It indicates that, in Austria, the socioeconomic 
development is probably more responsible for increasing losses than effects of 
climate change. Furthermore, it is necessary to consider not only the absolute 
monetary losses, but also the consequences of these losses for the communities.  
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Fig. 10.1.2-2: Building census, Austria 1951 – 2001, every red point is representing 100 buildings. 

(WIFO, 2008 based on Statistics Austria) 
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10.2 Producing Susceptibility Maps based on Neural Networks 
that take into Account Variable Precipitation Sums and/or 
Changes in Land-use 

Summary of scenario calculations 

Plausible scenarios for changed land-use and variable precipitation can be 
calculated using neural networks. Concrete information for spatial planning can be 
derived on the basis of these scenarios, and the methodology used also makes it 
technically possible to incorporate climate-change precipitation scenarios into 
landslide-disposition modelling. 

With the land-use scenarios “complete deforestation” and “complete reforestation,” 
there was a strong increase in process-oriented susceptibility in large areas of 
deforested land and a strong reduction in process-oriented susceptibility in 
reforested areas respectively. This underlines the strong influence of the parameter 
map “forest” on modelling and thus on susceptibility. 

In the case of the scenarios “area-wide maximum event-precipitation,” the 
results calculated with the parameter map precipitation “level low” showed only a 
moderate rise in susceptibility in areas that originally had low precipitation, although 
some false or implausible values did occur. On the other hand, the results calculated 
for these areas on the basis of the parameter map precipitation “level high” displayed 
a strong increase in susceptibility, which almost equalled the magnitude of the 
increase with land-use scenarios. No more false values occurred here. This can be 
attributed to the parameter map precipitation “level low” having only a weak and 
unclear influence on modelling, whereas the parameter map precipitation “level high” 
has a strong and clear impact.  

For the model results obtained using “level low” and “level high” parameter maps, 
only one “worst case” (complete deforestation) land-use scenario was calculated in 
each case, and one “best case” (complete reforestation). In addition, “worst case” 
(maximum) and “best case” (minimum) precipitation scenarios were calculated, 
assuming an area-wide equal precipitation based on the parameter maps “level low” 
and “level high.” The values for minimum and maximum precipitation sums are 
based on the event-precipitation in the area studied during the period 21-23 August 
2005. The land-use scenarios were calculated using runs without the parameter 
event precipitation, in which by using the runs 10 and 33, one of the best “level low” 
and “level high” runs respectively were chosen. For the precipitation-scenarios, it was 
necessary to select runs that contained the parameter event-precipitation. Here, with 
run 23 for “level low and run 58 for “level high” respectively, one of the best results 
was selected in each case. 

 

10.2.1 Changed land-use scenarios 

Fig. 10.2.1-1 now shows the “worst case” land-use scenario (complete deforestation) 
for the “level low” run 10. The large areas of greater susceptibility are clearly visible 
here, which can be attributed to a strong increase in susceptibility in the formerly 
forested areas of the result for run 10 (Fig. 7.2.2.1-8). This in turn underlines the 
strong influence of forest on modelling, and thus on process susceptibility.  
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Fig. 10.2.1-1: “Worst case” scenario, forest (complete deforestation) of run 10 

 

Fig. 10.2.1-2 presents the difference map of the result of run 10 and the “worst case” 
land-use scenario of run 10. The map clearly shows very negative differences. This 
would mean that deforestation had now resulted, without exception, in an increase in 
susceptibility (blue) in formerly forested areas, and had resulted in no change in 
susceptibility (white) in the areas without forest. The differences are obviously 
greater than those seen with the precipitation scenario “level low” (Chapter 10.2.2), 
and nowhere is there a decrease in susceptibility (red), as is the case with the 
precipitation scenario “level low.” This illustrates, on the one hand, that the neural 
networks react in the desired and expected way to changes in land-use. On the other 
hand, it also demonstrates the obviously stronger and more unequivocal influence of 
forest compared to precipitation “level low.” 



AdaptSlide 278 

 

 

Fig. 10.2.1-2: Difference between run 10 and “worst case” scenario forest of run 10 

 

Fig. 10.2.1-3 shows, by comparison, the “best case” land-use scenario (complete 
reforestation) for the “level low” run 10. It shows very large areas of low susceptibility 
and also major changes compared to the result of run 10 (Fig. 7.2.2.1-8). Due to 
reforestation, there is now usually a clear decrease in susceptibility in formerly 
unwooded areas compared to the result of run 10, while susceptibility remains 
equally high in forested areas. Here too, the decrease in susceptibility is stronger 
than that seen with precipitation “level low,” and nowhere is there an increase in 
susceptibility, which again points to the obvious and unequivocal influence of forest 
on modelling. 
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Fig. 10.2.1-3: “Best case” scenario forest (complete reforestation) of run 10 

 

The land-use scenarios of the “level high” run 33 show largely the same picture as 
the “level low” results of run 10. The changes in susceptibility here occur in 
approximately the same dimension as in run 10, however they are slightly higher 
than those of the precipitation scenario “level high.” This is due to precipitation “level 
high” having an obviously stronger influence on the result than “level low” 
precipitation (Chapter 7.2.2.2). 

The possible negative and positive consequences of deforestation and reforestation 
respectively are impressively reflected by these scenarios. These kinds of land-use 
scenarios could be a valuable tool for spatial planning, because concrete statements 
can be made about the way area-specific deforestation or reforestation will affect 
process susceptibility (Where should forest by no means be cleared, and where 
would clearing have no impact?). Where could reforestation have a positive effect on 
process susceptibility, and where would it not? 

 

10.2.2 Variable precipitation scenarios 

Fig. 10.2.2-1 now shows the “worst case” precipitation scenario for the “level low” 
result 23. Compared to the result of run 23 (Fig. 7.2.2.1-11), it generally shows an in 
increase in susceptibility in areas with originally lower precipitation in the east and 
west, and approximately constant susceptibility levels in areas of originally very high 
precipitation in the north and south of the study area. However, the changes 
compared to run 23 are moderate and thus obviously smaller than the changes in the 
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land-use scenarios (Chapter 10.2.1). This is due to the rather weaker influence that 
precipitation “level low” has on the modelling result (Chapter 7.2.2.1). 

 

Fig. 10.2.2-1: “Worst case” scenario, precipitation of run 23 

 

These facts can be seen even more clearly in Fig. 10.2.2-2, which shows the 
difference map of the “worst case” precipitation scenario of run 23 and run 23. Here, 
the increases in susceptibility with this scenario, compared to run 23, are shown in 
red, constant susceptibilities are shown in white, and decreases in susceptibility in 
blue. It is shown that with this scenario, despite the increase in precipitation, there 
are isolated examples of a decrease in susceptibility, which does not correspond to 
reality from a process-oriented point of view. The reason for this is that the 
connection between mass-movement distribution and the parameter precipitation 
“level low” is not that clear to the neural network, which is why this parameter plays 
only a rather weak role in the modelling, which in turn does not produce unequivocal 
results. 
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Fig. 10.2.2-2: Difference between run 23 and “worst case” scenario precipitation of run 23  

 

However, the situation is presented differently in the “worst case” precipitation 
scenario of “level high” run 58 (Fig. 10.2.2-3 and 10.2.2-4). Here there is an obvious 
increase in susceptibility compared to run 58 in the areas that originally had low 
precipitation in the northeast and west. These increases are much more pronounced 
here than they are in the “worst case” scenario of run 23 (Fig. 10.2.2-2). 
Furthermore, these increases display almost the same magnitude as the changes 
caused by the land-use scenarios (Chapter 10.2.1). Also, in contrast to the “level low” 
precipitation scenario, no decreases in susceptibility (blue) can be seen with higher 
precipitation. All of this can be attributed to the obvious influence of “level high” 
precipitation on modelling, this influence being much greater than that of “level low” 
precipitation (Chapter 7.2.2.2). Generally speaking, this strong increase in 
susceptibility strikingly demonstrates that in case of precipitation reaching the 
maximum level of the event in August 2005, large areas that had remained stable 
due to the distribution of precipitation during the 2005 event might still become 
unstable. 
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Fig. 10.2.2-3: “Worst case” scenario precipitation of run 58 

 

 

Fig. 10.2.2-4: Difference between “worst case” scenario precipitation of run 58 and run 58 
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It was therefore demonstrated that using neural networks, it is basically possible to 
calculate plausible scenarios based on an assumption of changed precipitation 
conditions, because the parameter precipitation had the expected and correct 
influence on the results. Therefore, in the future, scenarios relating to changed 
precipitation conditions due to climate change can be calculated in a similar way, 
provided reliable data on these conditions is available. However, it should be kept in 
mind that such scenarios, like the scenarios calculated here, do not take into account 
the important variables of antecedent soil moisture, precipitation intensity, and 
precipitation duration. Furthermore, it is unclear at what threshold values the 
correlations between precipitation-sum and existing/previous gravitational mass 
movements that have been incorporated into the model will still be valid (exceedance 
of soil infiltration capacity, for example).  

Based on the model calculations carried out, it can be said that the parameter 
precipitation “level high” is better suited for modelling than the “level low” variant, 
because it plays a stronger role in modelling, and no unrealistic differences in 
process susceptibility were calculated. 

 

10.3  Susceptibility Maps Based on Logistic Regression with 
Consideration of Variable Precipitation Sums and/or Changes in 
Land-use  

The development of the statistical models was based on the landslide inventory of 
the August 2005 event exclusively (Chapter 6.1). Furthermore when involving 
precipitation related parameter maps in specific modelling runs also the data of this 
event were used (NS_lg and NS_lh, cf. Chapter 5.5). Therefore strictly speaking 
these modelling results are valid only for the specific scenario of the August 2005 
event.  

In order to overcome these limitations and to exclude influences caused by the 
specific precipitation pattern of the August 2005 event some runs showing the best 
validation indices and involving NS_lg (run23) or NS_lh (run 58, 66 and 67) were 
recalculated with the scenario of uniform precipitation (arithmetic mean of the 
realistic precipitation as presented in NS_lg and NS_lh). These runs were named 
23mc, 58mc, 66mc and 67mc, the “mc” standing for “mean case”. 

Aiming at hypothesising a different precipitation event run 58 was recalculated as 
well with highest intensities uniformely covering the whole test area (runs 58c, 58d - 
worst case, cf. Chapter 10.3.2).  

Furthermore a different scenario with respect to landcover (worst case: complete 
deforestation) was recalculated in order to identify those areas with high sensitivities 
to landuse modifications. 

Altogether an additional 8 modelling runs were calculated aiming at modelling 
different scenarios with regard to precipitation and forest cover. These additional 
modelling runs are listed in Tab. 10.3-1. 
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Tab. 10.3-1: List of scenario model runs calculated with Logistic Regression  

Run Parameter Maps (abbreviations cf. Tab. 6.2.2) 

23mc Wald_Sat_lg_mb + HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + Sub_GK_lg + QDisp_lg_GK_lh_fa + NS_lg(mc) 

58mc Wald_Sat_lg_mb + HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + QDisp_lh_fa + Sub_GK_lh + NS_lh(mc) 

58b HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + QDisp_lh_fa + Sub_GK_lh + NS_lh 

58c HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + QDisp_lh_fa + Sub_GK_lh + NS_lh(max) 

58d Wald_Sat_lg_mb + HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + QDisp_lh_fa + Sub_GK_lh + NS_lh(max) 

58e Wald_DKM_lg_80 + HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + QDisp_lh_fa + Sub_GK_lh + NS_lh 

66mc Wald_Sat_lg_mb + HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + QDisp_lh_fa + Sub_GK_lh + NS_lh(mc) + BK 

67mc Wald_Sat_lg_mb + HN-DHM10 + VW-DHM10 + Wegenetz_lg_mb + BK + QDisp_lg_BK_fa + NS_lh(mc) 

explanations of run numbers: 

58mc = run 58 hypothesising mean case with regard to precipitation amount of August 2005 event 

58b = run 58 hypothesising no forest cover 

58c = run 58 hypothesising no forest cover and maximum precipitation considering August 2005 event 

58d = hypothesising maximum precipitation considering August 2005 event 

58e = run 58 considering Wald_DKM_lg_80 instead of Wald_Sat_lg_mb (abbreviations cf. Tab. 6.2.2) 

66mc = run 66 hypothesising mean case with regard to precipitation amount of August 2005 event 

67mc = run 67 hypothesising mean case with regard to precipitation amount of August 2005 event 

 

Summarizing the results of the scenario calculations which are presented in detail in 
the following sections, the same conclusions can be drawn as for neural networks 
(Chapter 10.2): plausible scenarios for modified land-use and variable precipitation 
can be calculated using the logistic regression approach. Practical information for 
spatial planning purposes can be derived on the basis of these scenarios, and the 
methodology used also makes it technically possible to incorporate climate-change 
precipitation scenarios into landslide-disposition modelling. 

 

10.3.1 Changed land-use scenarios 

Past events (without strong winds) have indicated a significant correlation between 
the susceptibility of shallow landslides in loose material and the forest cover. By 
hypothesising a “worst case” land-use scenario (complete deforestation) and 
visualizing the differences in difference maps areas with particular sensitivity towards 
deforestation can be identified.  
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Fig. 10.3.1-1: “Worst case” scenario, forest (complete deforestation) of run 58 

 

Fig. 10.3.1-1 shows the “worst case” land-use scenario (complete deforestation) for 
the “level high” run 58. Very similar to the results obtained by neural networks (cf. 
chapter 10.2) the large areas of higher susceptibility are clearly visible, which can be 
attributed to a strong increase in susceptibility in the formerly forested areas of the 
result of run 58 (Fig. 7.4.2.2-2). This in turn underlines the strong influence of forest 
on modelling, and thus on process susceptibility.  

Fig. 10.3.1-2 presents the difference map of the result of run 58 and the “worst case” 
land-use scenario 58b for forested areas (currently open areas are shown in white), 
highlighting small (yellow) and large differences (red). The map clearly shows high 
negative differences indicating that deforestation results, without any exception, in an 
increase of susceptibility in formerly forested areas. However the scale of differences 
is quite heterogeneous. High dfferences (> 0,5, red) can be observed mostly in very 
steep areas whereas small differences (< 0,1, yellow) are restricted to forested areas 
on gentle slopes. This illustrates that - like the calculation based on neural networks - 
the calculation based on logistic regression reacts in the desired and expected way 
to changes in land-use.  
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Fig. 10.3.1-2: Differences between run 58 and “worst case” scenario forest of run 58b 

 

10.3.2 Variable precipitation scenarios 

Regarding precipitation scenarios models were developed with the real precipitation 
distribution as presented by the respective August 2005 event analyses and 
regionalised afterwards with highest (worst case) intensities. 

The following simulation refers to run 58 representing the best result of the “level 
high” modelling stage which was trained and validated with the NS_lh parameter 
map (cf. Chapter 5.5). 

Fig. 10.3.2-1 shows the “worst case” precipitation scenario for the result 58 (58d, see 
Tab. 10.3-1). Fig. 10.3.2-2 presents the difference map of the result of run 58 and 
the “worst case” precipitation scenario 58d. A significant increase in susceptibility 
compared to run 58 in the areas that originally had relatively low precipitation in the 
northeast and west can be observed. These increases display almost the same 
magnitude as the changes caused by the “worst case” land-use scenario (complete 
deforestation, cf. Chapter 10.3.1). No reductions of susceptibility (blue) can be 
observed with higher precipitation. These results can be attributed to the obvious 
influence of NS_lh on modelling. The calculation based on logistic regression reacts 
in the desired and expected way to changes in precipitation. 
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Fig. 10.3.2-1: “Worst case” scenario 58b, precipitation of run 58 

 

For visualisation purposes the high negative differences as displayed in Fig. 10.3.2-2 
covering large areas in the northern and western part of the study area have been 
split up and are presented in Fig. 10.3.2-3.  

The results of logistic regression based scenarios with respect to precipitation give 
approximately equivalent results as the neural network based calculations: the strong 
increase of susceptibilities indicates that in case of precipitation reaching the 
maximum level of the event in August 2005, large areas that were not affected by 
landslides due to the distribution of precipitation during the 2005 event might still 
become unstable. 
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Fig. 10.3.2-2: Differences between run 58 and “worst case” scenario precipitation  

 

Fig. 10.3.2-3: Differences between run 58 and “worst case” scenario precipitation (split version)  
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11. Summary and conclusions 

The AdaptSlide project was implemented to analyse, compare and improve different 
modelling techniques for creating susceptibility maps regarding spontaneous 
landslides in loose material in the region of Gasen-Haslau (about 50 km2), especially 
by studying the improvement possibilities of the input data quality. 

It was carried out within the framework of the AdaptAlp project and co-financed by 
the Federal Ministry of Agriculture, Forestry, Environment and Water Management 
(BMLFUW). Project partners were the Geological Survey of Austria (GBA), the 
Federal Research and Training Centre for Forests, Natural Hazards and Landscape 
(BfW), the Joanneum Research (JR), and the Central Institute for Meteorology and 
Geodynamics (ZAMG). 

It was investigated in which way different parameter maps which describe the 
temporal and spatial variable site conditions, influence susceptibility maps for soil 
slips and earth flows. On the one hand, we analysed which improvements could be 
achieved by integrating a parameter map into the modelling process compared to the 
parameter map in question not being used. On the other hand, we studied the 
improvement potential resulting from the use of parameter maps that had been 
improved by applying expert knowledge, additional calculations, and field mapping 
(=“high level” parameter maps). They where compared to parameter maps produced 
in the standard manner, using generally available data (=“level low” parameter 
maps). In addition, we performed a number of model runs with exclusively process-
oriented combinations of parameter maps selected on the basis of the authors’ 
expert knowledge.  

All parameter maps for this project were generated and analysed by the project 
partners. In some cases, methods developed by the partners were used to generate 
the maps. The expenditure required to produce the parameter maps was recorded in 
order to determine the cost-benefit ratio of the parameter maps generated in this 
way.  

The empirical approach to estimate the runout length of landslides area-wide was 
attuned to the formats and information of the compiled landslide maps and 
commonly available data.  

 

11.1. Modelling of Susceptibility Maps 

The methods used for modelling susceptibility maps were: neural networks, logistic 
regression, weight of evidence and the deterministic approach SINMAP. The results 
of neural networks and logistic regression were subjected to more precise validation 
and comparative analysis. Because the authors consider conventional validation 
methods as inadequate, a combination of several validation methods was used and 
an advanced validation strategy developed. 

Several examples of best results were ultimately selected from the modelling, 
employing neural networks and logistic regression and combined to produce two 
final-result maps. These maps served as a basis for process area modelling. Neural 
networks and logistic regression were also tested for their suitability to establish 
scenarios for changed land-use and variable precipitation sums.  
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In the case of both modelling methods studied in detail (neural networks and logistic 
regression), major improvements in model performance (= improvements in the 
validation of results) were observed only with the integration of the following 
parameters: forest, road network, profile curvature, (and definitely slope as well, 
even though this was not studied) and to a limited extent with the integration of 
different subsurface flow dispositions (for the most part in the case of neural 
networks, but not with logistic regression) and precipitation (for logistic regression, 
but not for neural networks). The biggest differences in validation, and thus the 
greatest improvements in model performance, were achieved by the integration of 
the parameter forest. However, the integration of the parameters Flowaccumulation, 
geological basic disposition, basic disposition based on soil map, curvature 
classification and to a limited extent subsurface flow disposition and precipitation did 
generally not result in any improvement of the results of either modelling method. 

All these observations can be found for the different modelling methods in Tab. A4 to 
A6 in the Annex (see column “Improvements in the quality of the susceptibility map”), 
which list all the parameter maps studied and their improvement potential, i.e. the 
influence on the validation result (+/- “no influence to slightly positive influence” to 
+++ “very high positive influence”). The assessments of the improvements made in 
these tables and in the chapter described herein differ sometimes slightly from those 
in the individual chapters of the modelling (Chapter 7). This is the case, because in 
the authors opinion conventional international validation methods (Chapter 7.1) used 
in the project AdaptSlide are inadequate to provide exact and reliable assessments 
of the quality of results and should be considered only as rough assessment 
methods (see below). For that reason, comparisons of results that are described as 
“slightly better/worse” in the modelling chapter are assessed here as more or less 
“equally good” (+/- “no influence to slight influence”). 

The results for improvement potential of the improved parameter maps can also 
be seen in Tab. A4 to A6 in the Annex. The column “Improvement caused by 
compared parameter map” shows the improvement that was possible to achieve by 
means of the improved parameter map (= “level high”) compared to the original 
parameter map (= “level low”). The improved parameter map as well as the different 
parameter map versions with which it is compared, are listed in the column 
“Compared parameter map”.  

It was shown that in most cases the improved parameter maps did not improve the 
model performance. In almost all modelling runs using “level high” parameter maps 
there was no improvement in model performance (“+/-“ in the table) compared to the 
modelling runs with corresponding “level low” parameter map. Improvements 
compared to the “level low” (“+” in table) were to some extent possible for “level high” 
precipitation as an independent parameter (mainly for logistic regression, however 
not for neural networks). “Level high precipitation” is therefore the only “level high” 
parameter map that produced any kind of improvement. The lack of improvement 
with “level high” parameter maps is remarkable and might possibly be explained by 
inadequate validation methods. 

In the case of the parameters forest and subsurface flow disposition, it was possible 
to generate several parameter-map versions, where each version was derived in a 
different way. It was shown that none of these versions could be preferred, because 
they all produced similarly good validation results (see “+/-“ in Tab. A4 to A6 in the 
Annex). Furthermore, all runs with exclusively process-oriented parameter 
combinations resulted in a deterioration of the model performance. 
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Very large differences in validation, and thus the greatest improvements in model 
performance, could however always be achieved in the case of parameters with 
fieldwork based land-use information on forest and road network compared to 
these parameters without field data (Tab. A4 to A6 in the Annex). The improvement 
when comparing the parameter forest with/without field data was always assessed as 
“++” in the tables.  

This improvement potential of the improved parameter maps was subsequently 
examined in terms of a cost-benefit analysis with regard to the expenditure 
required to produce the maps. Fig. 11.1-1 shows the assessment scheme for this 
cost-benefit analysis: The relative expenditure of time (expenditure of time as the 
proportion of the expenditure of time to produce the parameter map with maximum 
expenditure) to produce a parameter map (x-axis) was compared to the improvement 
in the quality of results that was achieved by using this parameter map (y-axis). The 
y-axis corresponds to the validation in the column “improvements in the quality of the 
susceptibility map” in Tab. A4 to A6 in the Annex, which specifies the improvement of 
the model performance (=improvement in the validation of the result) caused by the 
integration of the particular parameter map in comparison to not using this parameter 
map. For example, the basic map 2 in Fig 11.1-1 was produced with very low 
expenditure (5%), but has improved the result by raising its quality over two levels. 

In the case of a combined parameter map, the total expenditure of time is given, i.e. 
the expenditure of time needed to generate the basic parameter maps used for 
producing the combined parameter map is included as well (for example the 
combined parameter map based on geological map „level low“ and flow 
accumulation). In this way, the time expenditure for the combined parameter map 
might turn out to increase considerably (total expenditure for basic maps 1 & 2), 
while the improvement remains at the same level as for the basic map 2 (Fig. 11.1-
1). This is because the quality of the result is mainly evoked by one parameter map 
(basic map 2). In this case basic map 1 as well as its combination with basic map 2 
did not result in an improvement of the quality of the output. So the use of basic map 
1 has to be questioned. 
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Fig. 11.1-1: Expenditure calculation of combined parameter map. In the example, the combination of 

map 2 and map 1 did not improve the output-quality 

 

Fig. 11.1-2 and 11.1-3 show these cost-benefit analyses for all of the parameter 
maps studied for the modelling methods of neural networks and logistic regression. 
Orange dots represent “level high” parameter maps, whereas “level low” parameter 
maps are represented by the other colours. Green dots show the versions of the 
“level low” parameter forest, light-blue dots the versions of the “level low” parameter 
subsurface flow disposition, while all other “low level” parameters appear as dark-
blue dots. The arrows (having a different meaning here than in Fig. 11.1-1) in each 
case connect a “level low” parameter map with a corresponding “level high” 
parameter map, or in the case of the forest map with and without field data of land 
use.  

The graphics provide further clarification of the statements made above: Almost all 
“level high” parameter maps did not produce any improvement in the quality of the 
result compared to the corresponding “level low” parameter maps (indicated by 
horizontal arrows). So the additional expenditure spent for the production of the 
“level high” maps was in vain in most cases. Only in the case of the precipitation map 
when using logistic regression it was possible to get an improvement (ascending 
arrow) in the “level high” map, with relatively high expenditure. On the other hand, in 
the case of the parameter road network when using neural networks, there was even 
a deterioration of the result to be observed (descending arrow).  

Another ascending arrow shows Fig. 11.1-2, which marks the improvement evoked 
by using the parameter map forest including field mapped land use information in 
comparison to forest without field mapped land use information when using neural 
networks. Furthermore the production of this map involved relatively low expenditure 
(field data must already be available, however). By comparing the versions of one 
parameter it was observed in the case of both forest (green dots) and subsurface 
flow disposition (light-blue dots) that the quality level of the results did not differ (all 
points remain at same improvement level) regardless of the invested expenditure. 
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Here, however, we refer once again to the limitations of the validation methods that 
also formed the basis for these analyses. 

 

 

Fig. 11.1-.2: Costs and benefits of applied parameter maps using neural networks 

 

 

Fig. 11.1-3: Costs and benefits of applied parameter maps using logistic regression 

 

When comparing the two modelling methods neural networks and logistic 
regression, it was seen that both methods generally produced quite similar 
susceptibility maps, although logistic regression differentiated somewhat more 
strongly between high and low susceptibilities. The validation comparison based on 
the applied validation methods indicated that the results from logistic regression and 
neural networks can be termed “equally good” to “slightly better” using neural 
networks. However, due to the limited validity of these comparisons (for example, 
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summarized area-wide validation, see below), neither of the two modelling methods 
could be definitely preferred. 

Also, as no definite “best result” could be selected due to similarly good validations of 
the results and inadequate validation methods, the best 5 results for each level of the 
two modelling methods were combined in order to produce a common, final-result 
map that involved both methods. These two final-result maps were calculated cell-
specifically as a combination of mean susceptibility from the respective maximum 
and minimum (= mid-range) on the one hand, and the fluctuation range (= half-
range) on the other. Thus, the combined final-result maps presented susceptibility 
and its spatial variability and uncertainty caused by the different modelling methods 
and the incomplete (or simplified) status of the data. This causes several possible 
susceptibility classes in many cells, which are illustrated in the final-result map for 
“level high” in Fig. A2 in the Annex. 

Using neural networks and logistic regresssion, it was possible to calculate plausible 
scenarios for changed land-use and variable precipitation. Based on these 
scenarios, it is possible in principle to make concrete statements for spatial planning 
and forestry concerning favourable areas for reforestation and areas that are at risk 
due to deforestation. With the methodology used, it would also be possible, in a 
general sense, to integrate climate-change precipiation scenarios into landslide-
susceptibility modelling. 

The lack of improvement with nearly all “level high” parameter maps is remarkable, 
and there might be several reasons for this, as there might also be for the similarly 
well validated parameter-map versions and best results, and for the deterioration in 
model performance with process-oriented parameter combinations. Actually, it might 
be that the “level high” parameter map used in each case does not depict the 
respective situation in a more realistic and process-oriented manner than the “level 
low” map, so that the expenditure of producing the “level high” parameter map for 
modelling can be questioned. Furthermore, it is also possible that the improvements 
in the parameter map cannot be captured by the model, because the data is 
insufficient, given the complexity of the material.  

However, it is also likely that some “level high” parameter maps are indeed more 
realistic and process-oriented than the corresponding “level low” map, but that the 
validation method is not able to recognize the improvements in the susceptibility 
map. This might be the case because, in the authors’ opinion, the validation methods 
used, are too simplified offering only summarized area-wide validation (Chapter 7.1). 
These validation methods can therefore not detect partial differences in map quality, 
so that small, well-modelled partial areas with many mass movements strongly affect 
the validation result for an entire area. This inadequacy of the validation methods 
was also shown, for example, by the way in which the integration of precipitation 
completely modified the appearance of the map and probably also improved the map 
due to the obvious importance of this parameter. Nevertheless, the validation result 
remained virtually unchanged.  

This deficit underlines the necessity of developing new, partial validation methods, 
so that in future, reliable statements can be made on both, model performance and 
the possibility of improvement in final results, as well as the capabilities of individual 
modelling methods. 

Based on the inadequacy of the validation methods, it can also be concluded, as 
demonstrated by the AdaptSlide project that in subsequent projects several 
validation methods should be used in combination, as long as no single reliable 
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validation method has been developed. Likewise, no single result of a single 
modelling method should be selected as the best final result, but rather 
combinations of several results from both modelling methods should be provided 
as final results, in order to illustrate the uncertainty of the modelling results. 

The obvious improvement of the results using field data for forest and road network 
clearly shows the enormous importance of mapping this land-use information in 
the framework of an event documentation of gravitational mass movements in the 
field. In future projects, particular attention should be paid to collect as much high-
quality and comprehensive data as possible.   

 

11.2. Modelling the Process Area  

For any kind of spatial planning considering landslides, it is not only necessary to 
consider the starting zone but to look at the whole area affected by this process. 
Thus, in the AdaptSlide project a model was developed to estimate the process-
area of spontaneous (shallow) landslides on an area wide basis (for the test 
area). It is based on a simple travel angle model for small snow avalanches.  

To run the model, an adequate data base of documented landslides and/or slope 
debris flow to determine the α-angle to calibrate the model and to evaluate the 
results is required. Further, the DEM have to adequately display the transport-
relevant surface structures. The DEM 10, which was available for the test area has 
not always fulfilled these requirements in a satisfying manner. 

Most important for estimating the process area is the starting information (e.g. 
susceptibility maps) and the definition of the threshold for the starting criterion 
(disposition). Scientifically a threshold of 0.5 is justified, but this decision depends 
also on substantial socio-economic and administrative reasons.  

The model displays the area affected by landslide processes area wide on pixel 
basis to identify “hot spots”. Optionally, the probability of the landslide disposition 
map can be overtaken from the disposition map. The results have to be interpreted 
as estimation with limited demands of accuracy, considering the empirical, area-wide 
model approach.  

When assessing the model results, it turned out that there are no adequate methods 
to evaluate the area-wide model results. The assessment on the basis of 
documented single events amended by documentations, expert knowledge and other 
model approaches may be sufficient for model calibration, but it is inappropriate to 
evaluate the model results in a comparable way. Thus, a coherent evaluation of the 
approach could not be accomplished. 
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